Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Начертательная геометрия.pdf
Скачиваний:
124
Добавлен:
17.03.2015
Размер:
2.82 Mб
Скачать

13.6 Топографические поверхности

Образование их не подчинено какому-либо закону. К таким поверхностям относятся поверхности земной коры, корпуса судов, обшивки самолетов, автомобилей.

На чертеже эти поверхности изображаются при помощи семейства некоторых линий (рису-

нок 5-6).

 

Из сказанного выше

 

видно, что некоторые по-

 

верхности могут быть от-

 

несены к нескольким клас-

Рисунок 5-6

сам одновременно

 

 

14. ВЗАИМОПРИНАДЛЕЖНОСТЬ ТОЧКИ И ПОВЕРХНОСТИ, ЛИНИИ И ПОВЕРХНОСТИ

Для построения точки на любой поверхности необходимо провести на этой поверхности произвольную линию и на ней взять точку.

В качестве такой вспомогательной линии следует брать графически простые линии, т.к. это упрощает решение.

На многогранных и линейчатых поверхностях в качестве вспомогательных линий лучше выбирать прямые линии, а на поверхностях вращения - окружности (параллели).

Для построения произвольной линии или фигуры, лежащей на поверхности, необходимо построить несколько точек этой фигуры (линии), а затем их последовательно соединить, учитывая при этом их принадлежность одной грани и видимость.

14.1 Построение линий на гранных поверхностях

Примеры построений представлены на рисунке 5-7. Пусть положение линий MN задано на видах спереди

Так как поверхности гранные, то линии MN в обоих случаях будут ломаными и точки излома принадлежат ребрам поверхностей, с которыми линии MN пересекаются на видах спереди. Такими точками являются точки 3 (в примере «а») и 2(в примере «б»). Эти точки на видах сверху находятся просто – способом принадлежности.

Пример а) Для построения точек M и N проведем на поверхности призмы вспомогательные прямые параллельные боковым ребрам и проходящие через точки М и N. Эти прямые с помощью точек 1 и 2 несложно построить на виде сверху, а затем определить на них проекции точек М и N.

 

 

 

 

 

 

a)

 

б)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 5-7 Полученные на виде сверху точки соединяем отрезками пря-

мых. Участок М-3 принадлежит грани АВЕD, которая на виде сверху видима, следовательно и этот участок будет видимым. Участок 3-N принадлежит грани ВСFЕ которая на виде сверху невидима, следовательно отрезок 3-N так же будет невидимым.

Пример б) Построение линии МN на поверхности пирамиды так же начинаем с нахождения на виде сверху точки излома (т.2). Для построения точки М на поверхности пирамиды проведена вспомогательная прямая 1-2, принадлежащая грани АВS, а для нахождения т. N - линия S-3, принадлежащая грани ВСS. Точки 1 и 3 легко находятся на виде сверху, после чего построение точек М и N не вызывает затруднений.

14.2 Построение линий на поверхностях вращения

Примеры построений показаны на рисунке 5-8. Вид спереди этих линий задан. Необходимо достроить данные линии на видах сверху.

Пример а) Для построения линии АВ принадлежащей поверхности прямого кругового цилиндра в общем случае необходимо использовать горизонтали h или образующие l.

В данном же случае целесообразно использовать вырожденный вид цилиндрической поверхности, где вся боковая поверхность цилиндра проецируется в окружность. Линия АВ при этом совпадает с окружностью и находится на передней ее части.

а)

Рисунок 5-8

Пример б) Построение линии на поверхности конуса вращения начинаем с нахождения точек А и С, лежащих на контурных (очерковых) образующих конуса, которые на виде сверху находим без дополнительных построений.

Т.к. участок линии АВ параллелен основанию конуса, проводим через него горизонталь h (параллель).

Для построения участка ВС необходимо найти ряд дополнительных точек. Показано построение точки 2 при помощи образующей S-1 , но эту же точку можно построить и с помощью параллели (горизонтали) поверхности.

Пример в) Построение линии на поверхности сферы начато с нахождения точек А и С, лежащих на главном меридиане. Для построения участка линии ВС и промежуточной точки 1 использованы параллели поверхности (горизонтали h1 и h2).

АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ

15.ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ.

16.ПОКАЗАТЕЛИ ИСКАЖЕНИЯ ПО АКСОНОМЕТРИЧЕСКИМ ОСЯМ.

17.ОРТОГОНАЛЬНЫЕ И КОСОУГОЛЬНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ.

18.СТАНДАРТНЫЕ АКСОНОМЕТРИЧЕСКИЕ СИСТЕМЫ.

15.ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Аксонометрические изображения довольно широко применяются в конструкторской работе. Это объясняется тем, что они обладают большой наглядностью и сравнительно простым построением.

Особое значение приобретают аксонометрические изображения еще и потому, что в наши дни все большее внимание уделяется вопросам эстетики промышленных форм, внешнего вида изделий (дизайну).

Слово "аксонометрия" в переводе с греческого означает

"измерения по осям". Аксонометрическая проекция - это

чертеж, состоящий из одной параллельной проекции данного оригинала, дополненной пространственной системой координат, к которой предварительно был отнесен изображаемый оригинал.

 

 

 

Рассмотрим

пример

 

 

 

получения

аксонометрической

 

 

 

проекции.

 

 

 

 

 

 

 

Возьмем

 

точку

А,

 

 

 

отнесенную к пространственной

 

 

 

системе

 

 

прямоугольных

 

 

 

координат

 

XYZ.

Выберем

 

 

 

плоскость

проекций

П' и

 

 

 

 

 

 

спроецируем

на

нее

по

 

 

 

некоторому

 

 

данному

 

 

 

направлению S, точку А с

 

 

 

системой

 

прямоугольных

 

 

 

координат (рисунок 6-1).

 

 

Рисунок 6-1

 

0

-

начало

координат;

 

 

 

0XYZ-

натуральная система

 

 

 

координат; ОАxА1А - координатная ломаная; O'X'Y'Z' - аксонометрическая система координат; 0'А'хА'1А' - аксонометрическая координатная ломаная; А'- аксонометрическая