
- •3. Пределы функций
- •Замечательные пределы. Примеры решений
- •4. Производные функций Как найти производную? Примеры решений
- •Производная сложной функции. Примеры решений
- •Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно. Производная параметрически заданной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Дифференциал функции одной переменной
- •Вторая производная
- •4. 2.Частные производные. Примеры решений
- •Приближенные вычисления с помощью дифференциала
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Абсолютная и относительная погрешность вычислений
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Частные производные функции трёх переменных
- •Частные производные второго порядка функции трёх переменных
- •5. Интегралы
- •5.1. Неопределенный интеграл. Подробные примеры решений
- •5.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •5.1.2. Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •5.1.3.Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •5.1.4. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •5.1.5. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •5.1.6. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •5.2. Определенный интеграл. Примеры решений
- •5.2.1. Замена переменной в определенном интеграле
- •5.2.2. Метод интегрирования по частям в определенном интеграле
- •Уважаемый студент, распечатай и сохрани:
- •5.2.3. Определенный интеграл. Как вычислить площадь фигуры
- •5.2.3. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Теперь немного о геометрических иллюзиях.
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •5.3. Несобственные интегралы. Примеры решений
- •5.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •5.3.2. Несобственные интегралы от неограниченных функций
- •5.4. Эффективные методы решения определенных и несобственных интегралов
- •5.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •1) Подынтегральная функция является чётной, отрезок интегрирования симметричен относительно нуля, поэтому:
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •5.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •5.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •5.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •5.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •5.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •5.5. Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
Логарифмическая производная
Если производная от логарифмов – это такая сладкая музыка, то возникает вопрос, а нельзя ли в некоторых случаях организовать логарифм искусственно? Можно! И даже нужно.
Пример 11
Найти
производную функции
Похожие примеры мы недавно рассмотрели. Что делать? Можно последовательно применить правило дифференцирования частного, а потом правило дифференцирования произведения. Недостаток способа состоит в том, что получится огромная трехэтажная дробь, с которой совсем не хочется иметь дела.
Но в теории и практике есть такая замечательная вещь, как логарифмическая производная. Логарифмы можно организовать искусственно, «навесив» их на обе части:
Теперь нужно максимально «развалить» логарифм правой части (формулы перед глазами?). Я распишу этот процесс очень подробно:
Собственно приступаем к дифференцированию. Заключаем под штрих обе части:
Производная правой части достаточно простая, её я комментировать не буду, поскольку если вы читаете этот текст, то должны уверенно с ней справиться.
Как быть с левой частью?
В левой части у нас сложная функция. Предвижу вопрос: «Почему, там же одна буковка «игрек» под логарифмом?».
Дело в том, что эта «одна буковка игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (если не очень понятно, обратитесь к статье Производная от функции, заданной неявно). Поэтому логарифм – это внешняя функция, а «игрек» – внутренняя функция. И мы используем правило дифференцирования сложной функции :
В левой части как по мановению волшебной палочки у нас «нарисовалась» производная . Далее по правилу пропорции перекидываем «игрек» из знаменателя левой части наверх правой части:
А теперь вспоминаем, о каком таком «игреке»-функции мы рассуждали при дифференцировании? Смотрим на условие:
Окончательный
ответ:
Пример 12
Найти
производную функции
Это пример для самостоятельного решения. Образец оформления примера данного типа в конце урока.
С помощью логарифмической производной можно было решить любой из примеров №№4-7, другое дело, что там функции проще, и, может быть, использование логарифмической производной не слишком-то и оправдано.
Производная степенно-показательной функции
Данную функцию мы еще не рассматривали. Степенно-показательная функция – это функция, у которой и степень и основание зависят от «икс». Классический пример, который вам приведут в любом учебнике или на любой лекции:
Как найти производную от степенно-показательной функции?
Необходимо использовать только что рассмотренный приём – логарифмическую производную. Навешиваем логарифмы на обе части:
Как правило, в правой части из-под логарифма выносится степень:
В результате в правой части у нас получилось произведение двух функций, которое будет дифференцироваться по стандартной формуле .
Находим производную, для этого заключаем обе части под штрихи:
Дальнейшие действия несложны:
Окончательно:
Если какое-то преобразование не совсем понятно, пожалуйста, внимательно перечитайте объяснения Примера №11.
В практических заданиях степенно-показательная функция всегда будет сложнее, чем рассмотренный лекционный пример.
Пример 13
Найти
производную функции
Используем
логарифмическую производную.
В правой части у нас константа и произведение двух множителей – «икса» и «логарифма логарифма икс» (под логарифм вложен еще один логарифм). При дифференцировании константу, как мы помним, лучше сразу вынести за знак производной, чтобы она не мешалась под ногами; и, конечно, применяем знакомое правило :
Как видите, алгоритм применения логарифмической производной не содержит в себе каких-то особых хитростей или уловок, и нахождение производной степенно-показательной функции обычно не связано с «мучениями».
Заключительные два примера предназначены для самостоятельного решения.
Пример 14
Найти
производную функции
Пример 15
Найти
производную функции
Образцы решения и оформления совсем близко.
Не такое и сложное это дифференциальное исчисление
Желаю успехов!
Решения и ответы:
Пример
1:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
Пример
3:
Пример
5:
Примечание:
перед дифференцированием можно было
раскрыть скобки
и
использовать правило
один
раз.
Пример
7:
Пример
9: Сначала преобразуем функцию. Используем
свойства логарифмов:
Найдем
производную. Используем правило
дифференцирования сложной функции:
Пример
10: Сначала преобразуем функцию:
Найдем
производную:
Пример
12: Используем логарифмическую производную.
Преобразуем функцию:
Находим
производную:
Пример
14: Используем логарифмическую
производную:
Пример
15: Используем логарифмическую
производную: