Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3-4-5_Матан.doc
Скачиваний:
139
Добавлен:
22.11.2019
Размер:
5.75 Mб
Скачать

5.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка

Заключительные пункты этой статьи предназначены для читателей, которые хорошо разобрались с несобственными интегралами второго рода на уроке Несобственные интегралы. Примеры решений. Рассмотрим другие разновидности несобственных интегралов второго рода. Ничего сложного!

Многие выкладки предыдущего параграфа будет справедливы и сейчас.

Сразу конкретная задача:

Пример 12

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечные разрывы в обоих концах отрезка интегрирования. Изобразим подынтегральную функцию

на чертёже:

Геометрически данный несобственный интеграл представляет собой площадь бесконечной криволинейной трапеции, которая не ограничена сверху.

Методика решения практически такая же, как и в предыдущем параграфе. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

Если оба интеграла правой части сходятся, то сходится и весь интеграл. Если хотя бы один из интегралов правой части расходится, то расходится и весь интеграл

А уж интегралы правой части рассматривались во втором разделе урока Несобственные интегралы. Примеры решений.

Но, вместо этого замечаем, что подынтегральная функция является чётнойЧётность использовать МОЖНО. В этом легко убедиться и по чертежу. Таким образом, интеграл целесообразно споловинить, а результат удвоить. Решаем наиболее рациональным способом:

Подынтегральная функция терпит бесконечные разрывы в точках  . Данная функция является чётной, а интервал интегрирования симметричен относительно нуля.

Ответ:

,

то есть, несобственный интеграл сходится

Пример 13

Вычислить несобственный интеграл или установить его расходимость.

Это пример для самостоятельного решения. Всё, как и в предыдущем параграфе –нечетностью функции пользоваться НЕ НУЖНО. Аккуратно делим интеграл на две части и исследуем сходимость по типовому алгоритму. Полное решение и ответ в конце урока.

Не редкость, когда подынтегральная функция не является четной или нечетной, да и отрезок интегрирования не симметричен относительно нуля. Например, рассмотрим несобственный интеграл

.

Подынтегральная функция опять терпит бесконечные разрывы в обоих концах отрезка интегрирования. Алгоритм такой же, делим интеграл на два интеграла:

Удобное свойство, правда?

Интегралы правой части разобраны на уроке Несобственные интегралы. Примеры решений. Если оба интеграла будут сходиться, то будет сходиться и весь интеграл. Еслихотя бы один интеграл правой части расходится, то расходится и весь интеграл.

Кстати, не важно, в каком порядке исследовать сходимость интегралов правой части. Можно сначала исследовать сходимость интеграла

,

а потом (если до этого дойдет дело), исследовать сходимость первого интеграла в правой части.

5.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования

Если честно, такой пример встречался в моей практике всего один раз (по крайне мне, вспомнил лишь один), поэтому я ограничусь только обзором.

Пример опять же будет в известной степени условным, первое, что в голову пришло. Рассмотрим несобственный интеграл

.

На концах отрезка интегрирования всё хорошо. Но подынтегральная функция терпит бесконечный разрыв прямо на отрезке в точке x = 1. Подынтегральная функция является четной, но это не имеет никакого значения, поскольку отрезок интервал интегрирования не симметричен относительно нуля.

Метод уже состарился, как хмм… чешуя динозавра. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

Интегралы правой части вам уже знакомы. А проговаривать алгоритм в третий раз не буду, смотрите предыдущие два параграфа)

Решения и ответы:

Пример 2: Решение:

Пример 5: Решение: Проведем замену: Новые пределы интегрирования:

Пример 8: Решение:

Подынтегральная функция непрерывна на интервале .

Пример 11: Решение:

Подынтегральная функция непрерывна на всей числовой прямой. Представим интеграл в виде суммы двух интегралов:

Проверим сходимость интегралов правой части:

Сходится.

Сходится. Оба интеграла сходятся, значит, сходится и весь интеграл:

Ответ:

Примечание: Будет серьезной оплошностью сразу записать, что

,

пользуясь нечетностью подынтегральной функции и симметричностью интервала интегрирования. Стандартный алгоритм обязателен!!!

Пример 13: Решение:

Подынтегральная функция терпит бесконечные разрывы в точках

.

Представим данный интеграл в виде суммы двух интегралов:

Исследуем сходимость интегралов правой части:

Несобственный интеграл расходится, значит, расходится и весь интеграл.

Интеграл

можно уже не проверять.

Ответ: интеграл

– расходится

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]