Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3-4-5_Матан.doc
Скачиваний:
139
Добавлен:
22.11.2019
Размер:
5.75 Mб
Скачать

Приближенные вычисления с помощью дифференциала

На данном уроке мы рассмотрим широко распространенную задачу

о приближенном вычислении значения функции с помощью дифференциала.

Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости я часто буду говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.

Кроме того, на странице присутствуют формулы нахождения абсолютной и относительной погрешность вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах. Физики, где ваши аплодисменты? =)

Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с урока Как найти производную? Также рекомендую прочитать статью Простейшие задачи с производной, а именно параграфы о нахождении производной в точке и нахождении дифференциала в точке. Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать Эксель, но в данном случае он менее удобен.

Урок состоит из двух частей:

– Приближенные вычисления с помощью дифференциала функции одной переменной.

– Приближенные вычисления с помощью полного дифференциала функции двух переменных.

Кому что нужно. На самом деле можно было разделить богатство на две кучи, по той причине, что второй пункт относится к приложениям функции нескольких переменных. Но что поделать, вот люблю я длинные статьи.

Рассматриваемое задание тесно связано с понятием дифференциала, но, поскольку урока о смысле производной и дифференциала у меня пока нет, ограничимся формальным рассмотрением примеров, чего вполне достаточно, чтобы научиться их решать.

Приближенные вычисления с помощью дифференциала функции одной переменной

В первом параграфе рулит функция одной переменной. Как все знают, она обозначается через   или через  . Для данной задачи намного удобнее использовать второе обозначение. Сразу перейдем к популярному примеру, который часто встречается на практике:

Пример 1

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Решение: Пожалуйста, перепишите в тетрадь рабочую формулу для приближенного вычисления с помощью дифференциала:

Начинаем разбираться, здесь всё просто!

На первом этапе необходимо составить функцию . По условию предложено вычислить кубический корень из числа: , поэтому соответствующая функция имеет вид: . Нам нужно с помощью формулы найти приближенное значение .

Смотрим на левую часть формулы , и в голову приходит мысль, что число 67 необходимо представить в виде . Как проще всего это сделать? Рекомендую следующий алгоритм: вычислим данное значение на калькуляторе: – получилось 4 с хвостиком, это важный ориентир для решения.

В качестве подбираем «хорошее» значение, чтобы корень извлекался нацело. Естественно, это значение должно быть как можно ближе к 67. В данном случае: . Действительно: .

Примечание: Когда с подбором всё равно возникает затруднение, просто посмотрите на скалькулированное значение (в данном случае ), возьмите ближайшую целую часть (в данном случае 4) и возведите её нужную в степень (в данном случае ). В результате и будет выполнен нужный подбор .

Если , то приращение аргумента: .

Итак, число 67 представлено в виде суммы 

Далее работаем с правой частью формулы  .

Сначала вычислим значение функции в точке  . Собственно, это уже сделано ранее:

Дифференциал в точке находится по формуле:   – тоже можете переписать к себе в тетрадь.

Из формулы следует, что нужно взять первую производную:

И найти её значение в точке  :

Таким образом:

Всё готово! Согласно формуле  :

Найденное приближенное значение достаточно близко к значению  , вычисленному с помощью микрокалькулятора.

Ответ:

Пример 2

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока. Начинающим сначала рекомендую вычислить точное значение   на микрокалькуляторе, чтобы выяснить, какое число принять за  , а какое – за  . Следует отметить, что   в данном примере будет отрицательным.

У некоторых, возможно, возник вопрос, зачем нужна эта задача, если можно всё спокойно и более точно подсчитать на калькуляторе? Согласен, задача глупая и наивная. Но попытаюсь немного её оправдать. Во-первых, задание иллюстрирует смысл дифференциала функции. Во-вторых, в древние времена, калькулятор был чем-то вроде личного вертолета в наше время. Сам видел, как из местного политехнического института году где-то в 1985-86 выбросили компьютер размером с комнату (со всего города сбежались радиолюбители с отвертками, и через пару часов от агрегата остался только корпус). Антиквариат водился и у нас на физмате, правда, размером поменьше – где-то с парту. Вот так вот и мучились наши предки с методами приближенных вычислений. Конная повозка – тоже транспорт.

Так или иначе, задача осталась в стандартном курсе высшей математики, и решать её придётся. Это основной ответ на ваш вопрос =).

Пример 3

Вычислить приближенно с помощью дифференциала значение функции   в точке  . Вычислить более точное значение функции в точке   с помощью микрокалькулятора, оценить абсолютную и относительную погрешность вычислений.

Фактически то же самое задание, его запросто можно переформулировать так: «Вычислить приближенное значение   с помощью дифференциала»

Решение: Используем знакомую формулу:  В данном случае уже дана готовая функция:  . Ещё раз обращаю внимание, что для обозначения функции вместо «игрека» удобнее использовать  .

Значение   необходимо представить в виде  . Ну, тут легче, мы видим, что число 1,97 очень близко к «двойке», поэтому напрашивается  . И, следовательно:  . Вычислим значение функции в точке  :

Используя формулу  , вычислим дифференциал в этой же точке.

Находим первую производную:

И её значение в точке  :

Таким образом, дифференциал в точке:

В результате, по формуле  : 

Вторая часть задания состоит в том, чтобы найти абсолютную и относительную погрешность вычислений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]