
- •3. Пределы функций
- •Замечательные пределы. Примеры решений
- •4. Производные функций Как найти производную? Примеры решений
- •Производная сложной функции. Примеры решений
- •Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно. Производная параметрически заданной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Дифференциал функции одной переменной
- •Вторая производная
- •4. 2.Частные производные. Примеры решений
- •Приближенные вычисления с помощью дифференциала
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Абсолютная и относительная погрешность вычислений
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Частные производные функции трёх переменных
- •Частные производные второго порядка функции трёх переменных
- •5. Интегралы
- •5.1. Неопределенный интеграл. Подробные примеры решений
- •5.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •5.1.2. Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •5.1.3.Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •5.1.4. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •5.1.5. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •5.1.6. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •5.2. Определенный интеграл. Примеры решений
- •5.2.1. Замена переменной в определенном интеграле
- •5.2.2. Метод интегрирования по частям в определенном интеграле
- •Уважаемый студент, распечатай и сохрани:
- •5.2.3. Определенный интеграл. Как вычислить площадь фигуры
- •5.2.3. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Теперь немного о геометрических иллюзиях.
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •5.3. Несобственные интегралы. Примеры решений
- •5.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •5.3.2. Несобственные интегралы от неограниченных функций
- •5.4. Эффективные методы решения определенных и несобственных интегралов
- •5.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •1) Подынтегральная функция является чётной, отрезок интегрирования симметричен относительно нуля, поэтому:
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •5.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •5.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •5.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •5.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •5.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •5.5. Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
5.5. Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
Численные методы – достаточно большой раздел высшей математики и серьезные учебники по данной теме насчитывают сотни страниц. На практике, в контрольных работах традиционно предлагаются для решения некоторые задачи по численным методам, и одной из распространенных задач является – приближенное вычисление определенных интегралов. В этой статье я рассмотрю два метода приближенного вычисления определенного интеграла – метод трапеций и метод Симпсона.
Что нужно знать, чтобы освоить данные методы? Прозвучит забавно, но можно вообще не уметь брать интегралы. И даже вообще не понимать, что такое интегралы. Из технических средств потребуется микрокалькулятор. Да-да, нас ждут рутинные школьные расчёты. А еще лучше – закачайте мой калькулятор-полуавтомат для метода трапеций и метода Симпсона. Калькулятор написан в Экселе и позволит в десятки раз уменьшить время решения и оформления задач. Для экселевских чайников прилагается видеомануал! К слову, первая видеозапись с моим голосом.
Сначала зададимся вопросом, а зачем вообще нужны приближенные вычисления? Вроде бы можно найти первообразную функции и использовать формулу Ньютона-Лейбница, вычислив точное значение определенного интеграла. В качестве ответа на вопрос сразу рассмотрим демонстрационный пример с рисунком.
Вычислить
определенный интеграл
Всё
было бы хорошо, но в данном примере
интеграл не берётся – перед вами
неберущийся, так называемый интегральный
логарифм. А существует
ли вообще этот интеграл? Изобразим на
чертеже график подынтегральной
функции
:
Всё нормально. Подынтегральная функция непрерывна на отрезке и определенный интеграл численно равен заштрихованной площади. Да вот только одна загвоздка – интеграл не берётся. И в подобных случаях на помощь как раз приходят численные методы. При этом задача встречается в двух формулировках:
1) Вычислить определенный интеграл приближенно, округляя результат до определённого знака после запятой. Например, до двух знаков после запятой, до трёх знаков после запятой и т.д. Предположим, получился приближенный ответ 5,347. На самом деле он может быть не совсем верным (в действительности, скажем, более точный ответ 5,343). Наша задача состоит лишь в том, чтобы округлить результат до трёх знаков после запятой.
2) Вычислить определенный интеграл приближенно, с определённой точностью. Например, вычислить определённый интеграл приближенно с точностью до 0,001. Что это значит? Это значит, что если получен приближенный ответ 5,347, то все цифры должны быть железобетонно правильными. А точнее говоря, ответ 5,347 должен отличаться от истины по модулю (в ту или другую сторону) не более чем на 0,001.
Существуют несколько основных методов приближенного вычисления определенного интеграла, который встречается в задачах:
Метод
прямоугольников.
Отрезок интегрирования разбивается на
несколько частей и строится ступенчатая
фигура (гистограмма),
которая по площади близка к искомой
площади:
Не судите строго за чертежи, точность не идеальна – они лишь помогают понять суть методов.
В
данном примере проведено разбиение
отрезка интегрирования
на
три отрезка:
.
Очевидно, что чем чаще разбиение (больше
более мелких промежуточных отрезков),
тем выше точность. Метод прямоугольников
даёт грубое приближение площади, видимо,
поэтому очень редко встречается на
практике (припомнил только один
практический пример). В этой связи я не
буду рассматривать метод прямоугольников,
и даже не приведу простую формулу. Не
потому, что лень, а по причине принципа
моего решебника: что крайне редко
встречается в практических задачах, то
– не рассматривается.
Метод
трапеций. Идея
аналогична. Отрезок интегрирования
разбивается на несколько промежуточных
отрезков, и график подынтегральной
функции приближается ломаной линией:
Таким образом, наша площадь (синяя штриховка) приближается суммой площадей трапеций (красный цвет). Отсюда и название метода. Легко заметить, что метод трапеций даёт значительно лучшее приближение, чем метод прямоугольников (при одинаковом количестве отрезков разбиения). И, естественно, чем больше более мелких промежуточных отрезков мы рассмотрим, тем будет выше точность. Метод трапеций время от времени встречается в практических заданиях, и в данной статье будет разобрано несколько примеров.
Метод Симпсона (метод парабол). Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.
Чертеж строить не вижу смысла, поскольку визуально приближение будет накладываться на график функции (ломаная линия предыдущего пункта – и то практически совпала).
Задача на вычисление определенного интеграла по формуле Симпсона – самая популярное задание на практике. И методу парабол будет уделено значительное внимание.