
- •3. Пределы функций
- •Замечательные пределы. Примеры решений
- •4. Производные функций Как найти производную? Примеры решений
- •Производная сложной функции. Примеры решений
- •Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно. Производная параметрически заданной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Дифференциал функции одной переменной
- •Вторая производная
- •4. 2.Частные производные. Примеры решений
- •Приближенные вычисления с помощью дифференциала
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Абсолютная и относительная погрешность вычислений
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Частные производные функции трёх переменных
- •Частные производные второго порядка функции трёх переменных
- •5. Интегралы
- •5.1. Неопределенный интеграл. Подробные примеры решений
- •5.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Метод замены переменной в неопределенном интеграле
- •5.1.2. Интегрирование по частям. Примеры решений
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •5.1.3.Интегралы от тригонометрических функций. Примеры решений
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •5.1.4. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложение числителя
- •Метод подведения под знак дифференциала для простейших дробей
- •Метод выделения полного квадрата
- •Подведение числителя под знак дифференциала
- •Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Интегрирование неправильной дробно-рациональной функции
- •5.1.5. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •5.1.6. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям
- •Методом сведения интеграла к самому себе
- •Интегрирование сложных дробей
- •Интеграл от неразложимого многочлена 2-ой степени в степени
- •Интегрирование сложных тригонометрических функций
- •Интеграл от корня из дроби
- •5.2. Определенный интеграл. Примеры решений
- •5.2.1. Замена переменной в определенном интеграле
- •5.2.2. Метод интегрирования по частям в определенном интеграле
- •Уважаемый студент, распечатай и сохрани:
- •5.2.3. Определенный интеграл. Как вычислить площадь фигуры
- •5.2.3. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Теперь немного о геометрических иллюзиях.
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •5.3. Несобственные интегралы. Примеры решений
- •5.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •5.3.2. Несобственные интегралы от неограниченных функций
- •5.4. Эффективные методы решения определенных и несобственных интегралов
- •5.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •1) Подынтегральная функция является чётной, отрезок интегрирования симметричен относительно нуля, поэтому:
- •Вычисление площади круга с помощью определенного интеграла Тригонометрическая подстановка
- •5.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •5.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •5.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •5.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •5.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •5.5. Как вычислить определенный интеграл по формуле трапеций и методом Симпсона?
- •Как вычислить определенный интеграл методом трапеций?
- •Как вычислить определенный интеграл по формуле Симпсона?
5.1.3.Интегралы от тригонометрических функций. Примеры решений
На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все примеры будут разобраны подробно, доступно и понятно даже для чайника.
Для успешного изучения интегралов от тригонометрических функций Вы должны хорошо ориентироваться в простейших интегралах, а также владеть некоторыми приемами интегрирования. Ознакомиться с этими материалами можно на лекциях Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле. А сейчас нам потребуются: Таблица интегралов, Таблица производных и Справочник тригонометрических формул. Все методические пособия можно найти на страницеМатематические формулы и таблицы. Рекомендую всё распечатать. Особо заостряю внимание на тригонометрических формулах, они должны быть перед глазами – без этого эффективность работы заметно снизится.
Но
сначала о том, каких интегралов в данной
статье нет.
Здесь не найдется интегралов вида
,
–
косинус, синус, умноженный на какой-нибудь
многочлен (реже что-нибудь с тангенсом
или котангенсом). Такие интегралы
интегрируются по частям, и для изучения
метода посетите урок Интегрирование
по частям. Примеры решений.Также
здесь не найдется интегралов с
«арками» – арктангенсом, арксинусом и
др., они тоже чаще всего интегрируются
по частям.
При нахождении интегралов от тригонометрических функций используется ряд методов:
Использование тригонометрических формул
Понижение степени подынтегральной функции (частный случай п.1)
Метод замены переменной
Универсальная тригонометрическая подстановка (частный случай п.3)
В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовых интегралов. Следует отметить, что данное разделение по параграфам весьма условно, поскольку очень часто вышеперечисленные правила используются одновременно.
Использование тригонометрических формул
Пример 1
Найти
неопределенный интеграл.
Сначала
полное решение, потом комментарии.
Используем
формулу:
(1) Мы видим, что в подынтегральном выражении находится произведение двух функций. К сожалению, в интегральном исчислении нет удобной формулы для интегрирования произведения: , поэтому приходится прибегать к различным ухищрениям. В данном случае мы прерываем решение значком и поясняем, что используется тригонометрическая формула. Данная формула превращает произведение в сумму.
(2) Используем свойства линейности неопределенного интеграла – интеграл от суммы равен сумме интегралов; константу можно (и нужно) вынести за знак интеграла.
! Справка: При работе с тригонометрическими функциями следует помнить, что:
Косинус
– это четная функция, то есть
,
минус исчезает без всяких последствий.
В рассматриваемом примере:
Синус
– функция нечетная:
–
здесь минус, наоборот – не пропадает,
а выносится.
(3) Под
интегралами у нас сложные функции
(косинусы не просто от
,
а от сложного аргумента). Это простейшие
из сложных функций, интегралы от них
удобнее найти методом подведения под
знак дифференциала. Более подробно с
данным приёмом можно ознакомиться на
уроке Метод
замены переменной в неопределенном
интеграле.
(4)
Используем табличную формулу
,
единственное отличие, вместо «икса» у
нас сложное выражение.
Готово.
Пример 2
Найти
неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 3
Найти
неопределенный интеграл.
Классика жанра для тех, кто тонет на зачёте. Как Вы, наверное, заметили, в таблице интегралов нет интеграла от тангенса и котангенса, но, тем не менее, такие интегралы найти можно.
(1) Используем тригонометрическую формулу
(2) Подводим функцию под знак дифференциала.
(3) Используем табличный интеграл .
Пример 4
Найти
неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 5
Найти
неопределенный интеграл.
Степени у нас будут потихоньку повышаться =). Сначала решение:
(1)
Используем формулу
(2)
Используем основное тригонометрическое
тождество
,
из которого следует, что
.
(3) Почленно делим числитель на знаменатель.
(4) Используем свойство линейности неопределенного интеграла.
(5) Интегрируем с помощью таблицы.
Пример 6
Найти
неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Также существуют интегралы от тангенсов и котангенсов, которые находятся в более высоких степенях. Интеграл от тангенса в кубе рассмотрен на уроке Как вычислить площадь плоской фигуры? Интегралы от тангенса (котангенса) в четвертой и пятой степенях можно раздобыть на странице Сложные интегралы.