Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
часть 1_2009.doc
Скачиваний:
8
Добавлен:
13.11.2019
Размер:
1.92 Mб
Скачать

4.6. Вычисление ранга матрицы

Теорема. Ранг матрицы равен наибольшему порядку ее ненулевых миноров.

Доказательство.

Пусть A - произвольная матрица размера mn и r=rangA. Сформулируем теорему в виде критерия: r=rangA тогда и только тогда, когда у матрицы A есть ненулевой минор r порядка, а все миноры, порядка больше чем r, нулевые.

Необходимость. Пусть r=rangA, то есть в A имеется система из r линейно независимых строк. Образуем из них матрицу B. В матрице B имеется система из r линейно независимых столбцов, так как r=rangB. Из этих столбцов составим матрицу C, которая будет квадратной порядка r и ранга r, то есть она является неособенной и поэтому detC0. А определитель матрицы C является минором r-го порядка матрицы A. Следовательно, существует ненулевой минор r - порядка матрицы A.

Пусть s>r. Образуем матрицу D из s произвольно выбранных строк матрицы A, причем среди них не обязательно окажется система из r линейно независимых строк и поэтому r1=rangDr. Из s произвольно выбранных столбцов матрицы D составим матрицу G, причем среди них не обязательно окажется система из r1 линейно независимых столбцов матрицы D, то r2=rangGr1. :G- квадратная матрица порядка s ранга r2<s. G является особенной матрицей и поэтому detG=0. Определитель G является произвольным минором порядка s матрицы A. Следовательно, все миноры матрицы A порядка s>r нулевые.

Достаточность. Пусть у матрицы A есть ненулевой минор r порядка, а все миноры, порядка больше чем r, нулевые. Предположим, что ранг матрицы A равен s.

Если бы s<r, то по ранее доказанному имеем: любой минор порядка большего чем s нулевой, а значит и любой минор порядка r нулевой. Противоречие.

Если бы s>r, то по ранее доказанному имеем: существует ненулевой минор r-го порядка. Противоречие.

Следовательно, остается принять, что rangA=r. Теорема доказана.

Пример.

Вычислить ранг матрицы

.

Решение. Используем метод окаймляющих миноров, основанный на том, что ранг данной матрицы равен порядку такого минора данной матрицы, который отличен от нуля, а все его окаймляющие миноры равны нулю.

I.

II.

III.

IV. .

4.7. Теорема Бине-Коши

Теорема. Пусть и - матрицы размером и соответственно, и пусть . Тогда:

.

Суммирование в правой части проходит по всем возможным комбинациям по n элементов из 1, 2, …, m. В частности, при m=n и при n>m.

Для доказательства необходимо отметить, что так как , то:

,

где суммирование происходит по всем попарно различным . При m<n таких индексов нет, и, следовательно, . Если же , то - выборка элементов , взятых в каком-то порядке из 1, 2, …, m. Следует собрать все члены, соответствующие фиксированной комбинации , и получить нужное выражение:

,

где .

4.8. Теорема Лапласа

Данному минору порядка k для -матрицы отвечает дополнительный минор порядка n-k, матрица которого получается из A вычеркиванием строк с номерами и столбцов с номерами . Выражение:

,

называется алгебраическим дополнением к . При k=n-1 мы приходим к обычному определению алгебраического дополнения. При последовательном разложении определителя по элементам строк с номерами справедлива следующая теорема:

Теорема Лапласа. Пусть в матрице выбраны k строк с номерами . Тогда:

.

При произвольном n теорема Лапласа известна в двух частных случаях: 1) k=1; 2) A – матрица с углом нулей размера .

Случай теоремы Лапласа для :

.