
- •1. Общая теория статистики
- •1.1 Предмет общей теории статистики
- •1.2. Стадии и методы статистического исследования
- •2. Статистическое наблюдение
- •2.1. Программно-методологические вопросы статистического наблюдения
- •2.2. Основные организационные формы, виды и способы статистического наблюдения
- •3. Сводка и группировка статистических данных. Статистические таблицы
- •4. Абсолютные и относительные величины
- •5. Средние величины
- •6. Показатели вариации
- •6.1. Понятие вариации. Расчет среднего линейного отклонени
- •6 . 2. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения
- •6.3. Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения
- •6.4. Показатели относительного рассеивания
- •6.5. Показатели характеристики вариационных рядов
- •7.1. Понятие рядов распределения
- •7.2. Понятие статистических графиков
- •7.3. Классификация статистических графиков
- •Требования к построению статистических графиков
- •8.1. Понятие и классификация рядов динамики
- •8.2. Статистические показатели ряда динамики
- •8.3. Метод скользящей средней
- •Динамика урожайности зерновых культур в хозяйстве за 1989–2003 гг. И расчет скользящих средних
- •9.1. Понятие индексов. Их виды
- •10.1. Понятие выборочного метода
- •10.2. Ошибки, возникающие при выборочном наблюдении
- •10.3. Классификация выборок
- •10.4. Определение объема выборки
- •11.1. Виды статистической связи
- •11.2. Методы изучения статистической связи
- •Раздел II социально-экономическая статистика
- •Статистика населения
- •Статистика рынка труда, занятости, безработицы, затрат на рабочую силу и оплаты труда
- •Структура занятого населения региона (%)
- •Баланс активов и пассивов и статистика национального богатства
- •Статистика науки и инноваций
- •Статистика предпринимательства и предприятий
- •1. Статистика предприятий
- •2. Статистика промышленности
- •3. Статистика внутренней торговли, рынка товаров и услуг
- •4. Статистика инвестиций
- •Статистика доходов, потребления и социальной защиты населения
- •Показатели доходов населения
- •Методы изучения дифференциации доходов населения, уровня и границ бедности
- •Распределение населения Российской Федерации по размеру среднедушевого денежного дохода в 2003 г.
- •Показатели расходов и потребления населения
- •Обобщающие показатели уровня жизни населения
- •Статистика отраслей социальной сферы
- •Статистика жилищных условий и коммунального обслуживания населения
- •Статистика здравоохранения
- •Статистика образования
- •Статистика культуры, туризма и отдыха
- •Статистика пассажирского транспорта и связи по обслуживанию населения
- •Правовая статистика
- •Статистика цен, тарифов и инфляции
- •Статистика потребительских цен
- •Статистика цен производителей продукции промышленности
- •Статистика цен и тарифов на грузовые перевозки
- •Основные статистические показатели оценки инфляции
- •Статистика финансов
- •Статистика налогов и налоговой системы
- •Основные понятия рынка ценных бумаг
- •Статистика фондовых бирж
- •Статистика денежного обращения и кредита
- •2. Средний срок пользования ссудами:
- •3. Среднее число оборотов ссуд за год:
- •Статистика финансов предприятий и организаций
6.3. Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения
Техника вычисления дисперсии сложна, а при больших значениях вариантов и частот может быть громоздкой. Расчеты можно упростить, используя свойства дисперсии.
Дисперсия имеет следующие свойства.
Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсию не изменяет.
Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсию не изменяет.
3. Уменьшение или увеличение каждого значения признака в какое-то число раз k соответственно уменьшает или увеличивает дисперсию в k2 раз, а среднее квадратическое отклонение – в k раз.
4. Дисперсия
признака относительно произвольной
величины(
)
всегда больше дисперсии относительно
средней арифметической на квадрат
разности между средней и произвольной
величинами:
.
Если
А
=
0, то приходим к следующему равенству:
,
т.е. дисперсия признака равна разности
между средним квадратом значений
признака и квадратом средней.
Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими. Порядок расчета дисперсии простой:
1) определяют среднюю арифметическую:
2)
возводят в квадрат среднюю арифметическую:
возводят в квадрат отклонение каждого варианта ряда: x2i;
находят сумму квадратов вариантов:
;
делят сумму квадратов вариантов на их число, т.е. определяют средний квадрат:
определяют разность между средним квадратом признака и квадратом средней:
Пример 5. Имеются следующие данные о производительности труда рабочих.
Табельный номер рабочего |
Произведено продукции, шт. (xi) |
xi2 |
1 |
8 |
64 |
2 |
9 |
81 |
3 |
10 |
100 |
4 |
11 |
121 |
5 |
12 |
144 |
Итого |
50 |
510 |
Произведем следующие расчеты:
(шт.)
Рассмотрим расчет дисперсии в интервальном ряду распределения. Порядок расчета дисперсии взвешенной (по формуле ) следующий:
определяют среднюю арифметическую:
возводят в квадрат полученную среднюю:
;
возводят в квадрат каждый вариант ряда:
;
умножают квадраты вариантов на частоты:
суммируют полученные произведения:
делят полученную сумму на сумму весов и получают средний
квадрат
признака:
определяют разность между средним значением квадратов и квадратом средней арифметической, т.е. дисперсию:
6.4. Показатели относительного рассеивания
Для характеристики меры изменения изучаемого признака исчисляются показатели изменения в относительных величинах.
Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Показатель меры относительного рассеивания рассчитывается как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.
1. Коэффициент осцилляции (Ко) отражает относительное изменение крайних значений признака вокруг средней:
2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины:
3. Коэффициент вариации (V):
Поскольку среднеквадратическое отклонение дает обобщающую характеристику изменяемости всех вариантов совокупности, коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин. Исходят из того, что если V больше 40%, то это говорит о большой колеблемости признака в изучаемой совокупности.