Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы1.doc
Скачиваний:
71
Добавлен:
25.09.2019
Размер:
5.1 Mб
Скачать

Многомерный винеровский процесс

Многомерный ( -мерный) винеровский процесс   — это  -значный случайный процесс, составленный из   независимых одномерных винеровских процессов, то есть

,

где процессы   совместно независимы.

  1. Корреляционная функция и ее свойства;

Корреля́ция (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.[1] Математической мерой корреляции двух случайных величин служит корреляционное отношение [2], либо коэффициент корреляции (или )[1]. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической[3].

Корреляционная функция — функция времени или пространственных координат, которая задает корреляцию в системах со случайными процессами.

Зависящая от времени корреляция двух случайных функций X(t) и Y(t) определяется, как

,

где угловые скобки обозначают процедуру усреднения.

Если корреляционная функция вычисляется для одного и того же процесса, она называется автокорреляционной:

.

Аналогично, можно вычислить корреляционную функцию для процессов, происходящих в разных точках пространства в различные моменты времени:

.

Корреляционные функции широко используются в статистической физике и других дисциплинах, изучающих случайные (стохастические) процессы.

Свойства:

1) R(τ)=R(-τ). Функция R(τ) – является чётной.

2) Если х(t) – синусоидальная функция времени, то её автокорреляционная функция – косинусоидальная той же частоты. Информация о начальной фазе теряется. Если x(t)=A*sin(ωt+φ), то R(τ)=A2/2 * cos(ωτ).

3) Функция автокорреляции и спектра мощности связаны преобразованием Фурье.

4) Если х(t) – любая периодическая функция, то R(τ) для неё может быть представлена в виде суммы автокорреляционных функций от постоянной составляющей и от синусоидально изменяющейся составляющей.

5) Функция R(τ) не несёт никакой информации о начальных фазах гармонических составляющих сигнала.

6) Для случайной функции времени R(τ) быстро уменьшается с увеличением τ. Интервал времени, после которого R(τ) становится равным 0 называется интервалом автокорреляции.

7) Заданной x(t) соответствует вполне определённое R(τ), но для одной и той же R(τ) могут соответствовать различные функции x(t)

  1. Спектральная плотность мощности и ее свойства;

Спектральная плотность мощности (СПМ) в обработке сигналов — функция, задающая распределение мощности сигнала по частотам. Её значение имеет размерность мощности, делённой на частоту, то есть энергии.

Формальное определение

Пусть — сигнал, рассматриваемый на промежутке времени . Тогда энергия сигнала на данном интервале равна Тогда

= = = ,

где — спектральная функция сигнала. При , средняя мощность

.

— спектральная плотность мощности (функция плотности спектра мощности).

Спектр плотности мощности сигнала сохраняет информацию только об амплитудах спектральных составляющих. Информация о фазе теряется. Поэтому все сигналы с одинаковым спектром амплитуд и различными спектрами фаз имеют одинаковые спектры плотности мощности.

Свойства:

  • Энергетический спектр стационарного процесса (вещественного или комплексного) – неотрицательная величина:

.

((7))

  • Энергетический спектр вещественного стационарного в широком смысле случайного процесса есть действительная и четная функция частоты:

.

((8))

  • Корреляционная функция и энергетический спектр стационарного в широком смысле случайного процесса обладают всеми свойствами, характерными для пары взаимных преобразований Фурье. В частности, чем «шире» спектр тем «уже» корреляционная функция , и наоборот. Этот результат количественно выражается в виде принципа или соотношения неопределенности.