Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория вероятностей.docx
Скачиваний:
17
Добавлен:
24.09.2019
Размер:
1.88 Mб
Скачать
  1. Вероятность на дискретном пространстве элементарных исходов.

Пространство элементарных исходов назовём дискретным, если оно конечно или счётно:

Замечание 3.

Множество счётно, если существует взаимно-однозначное соответствие между этим множеством и множеством всех натуральных чисел. Счётными множествами являются, например, множество натуральных чисел, множество целых чисел, множество рациональных чисел, множество чётных чисел и т.д. Множество конечно, если оно состоит из конечного числа элементов.

Чтобы определить вероятность любого события на дискретном пространстве элементарных исходов, достаточно присвоить вероятность каждому элементарному исходу. Тогда вероятность любого события определяется как сумма вероятностей входящих в него элементарных исходов.

Поставим каждому элементарному исходу в соответствие число так, что

Назовём число вероятностью элементарного исхода . Вероятностью события назовём число

 ,

равное сумме вероятностей элементарных исходов, входящих в множество  . В случае положим .

Очевидные в случае дискретного пространства свойства вероятности:

  1. ;   ;   ;

  2. Если и несовместны, то ;

  3. В общем случае ;

  4. Если , то .

  1. Классическое определение вероятности

Предположим, что мы имеем дело с пространством элементарных исходов, состоящим из конечного числа элементов: . Предположим, что из каких-либо соображений мы можем считать элементарные исходы равновозможными. Тогда вероятность любого из них принимается равной . Эти соображения не имеют отношения к математической модели и основаны на какой-либо симметрии в эксперименте (симметричная монета, хорошо перемешанная колода карт, правильная кость).

Если событие состоит из элементарных исходов, то вероятность этого события равняется отношению :

где символом обозначено число элементов конечного множества .

Говорят, что эксперимент удовлетворяет классическому определению вероятности, если пространство элементарных исходов состоит из конечного числа равновозможных исходов. В этом случае вероятность любого события вычисляется по формуле

называемой классическим определением вероятности.

Формулу читают так: «вероятность события равна отношению числа исходов, благоприятствующих событию , к общему числу исходов». Полезно сравнить это определение с классической формулировкой Якоба Бернулли(1): «Вероятность есть степень достоверности и отличается от неё как часть от целого» (Ars Conjectandi, 1713 г.)

Мы видим теперь, что подсчёт вероятности в классической схеме сводится к подсчёту общего числа «шансов» и числа шансов, благоприятствующих какому-либо событию. Число шансов считают с помощью формул комбинаторики.

Рассмотрим описанные в параграфе 1 урновые схемы. Три схемы: с возвращением и с учётом порядка, без возвращения и с учётом порядка, а также без возвращения и без учёта порядка, удовлетворяют классическому определению вероятности. Общее число элементарных исходов в этих схемах подсчитано в теоремах 4, 2, 3 и равно соответственно , , . Четвёртая же схема — схема выбора с возвращением и без учёта порядка — имеет заведомо неравновозможные исходы.

Пример 5. Рассмотрим выбор двух шариков из двух или, что то же самое, дважды подбросим монету. Если учитывать порядок, то исходов получится четыре, и все они равновозможны, т.е. имеют вероятность по 1/4:

Если порядок не учитывать, то следует объявить два последних исхода одним и тем же результатом эксперимента, и получить не четыре, а три исхода:

Первые два исхода имеют вероятности по 1/4, а последний — вероятность 1/4+1/4=1/2.

  1. Общее пространство элементарных исходов. σ– алгебра событий.

    Пространством элементарных исходов («омега») называется множество, содержащее все возможные результаты данного случайного эксперимента, из которых в эксперименте происходит ровно один. Элементы этого множества называют элементарными исходами и обозначают буквой («омега»).

    Алгебра событий

Пусть — пространство элементарных исходов некоторого случайного эксперимента (т.е. непустое множество произвольной природы). Мы собираемся определить набор подмножеств , которые будут называться событиями, и затем задать вероятность как функцию, определённую только на множестве событий.

Итак, событиями мы будем называть не любые подмножества , а лишь элементы некоторого выделенного набора подмножеств . При этом необходимо позаботиться, чтобы этот набор подмножеств был замкнут относительно введённых в параграфе 2 главы 1 операций над событиями, т.е. чтобы объединение, пересечение, дополнение событий снова давало событие. Сначала введём понятие алгебры событий.

Множество , элементами которого являются подмножества множества (не обязательно все) называется алгеброй (алгеброй событий), если оно удовлетворяет следующим условиям:

(A1)    (алгебра событий содержит достоверное событие);

(A2)  если , то  (вместе с любым событием алгебра содержит противоположное событие);

(A3)  если и , то  (вместе с любыми двумя событиями алгебра содержит их объединение).

Из свойств (A1) и (A2) следует, что пустое множество также содержится в .

Из (A3) следует, что вместе с любым конечным набором событий алгебра содержит их объединение: для любого , для любых , ...,  выполнено .

Вместо замкнутости относительно операции объединения можно требовать замкнутость относительно операции пересечения.

Свойство 1. Свойство (A3) в определении 10 можно заменить на

(A4)  если и , то .

Доказательство. Докажем, что при выполнении (A1) и (A2) из (A3) следует (A4). Если , , то , по свойству (A2). Тогда из (A3) следует, что , и, по (A2), дополнение к этому множеству также принадлежит . В силу формул двойственности, дополнение к объединению как раз и есть пересечение дополнений:

Аналогично доказывается, что при выполнении (A1) и (A2) из (A4) следует (A3), т.е. эти два свойства в определении взаимозаменяемы.

Пример. Пусть — пространство элементарных исходов. Следующие наборы подмножеств являются алгебрами (проверьте это по определению):

1. тривиальная алгебра.

2. .

3. , где — произвольное подмножество (в предыдущем примере ).

4. множество всех подмножеств .