
- •1.2Приемы устных вычислений: особенности, теоретическая основа, значение. Основные этапы формирования вычислительного навыка при работе над сложением чисел в пределах ста.
- •2.2Методика изучения углов в начальной школе.
- •4.2Формирование понятий «меньше на…», «больше на…». Методика работы над простыми задачами на увеличение и уменьшение на несколько единиц и разностное сравнение.
- •5.2Ознакомление учащихся с действием деления. Терминология и обозначения, связанные с действием деления.
- •6.2Методика изучения устной и письменной нумерации чисел в пределах ста.
- •7.1Ознакомление со сложением и вычитанием; обучение сложению и вычитанию чисел в пределах первого десятка.
- •8,2Методика работы над задачами, раскрывающими конкретный смысл арифметических действий.
- •9,2Методика ознакомления с составной задачей.
- •10,2Формирование понятий «меньше в…», «больше в…».
- •2.Методика работы над задачами на пропор.Деление и нахождение неизвестных по двум разностям.
- •1.Отнош.«больше на…»и «меньше на...»на мн.Целых неотриц.Чисел.
- •1.Невозможность деления на нуль. Правила деления суммы и произведения на число. Понятие деления с остатком.
- •2.Методика изуч.Прямоугольника и квадрата в нач.Кл.
- •1.Понятие дроби и положит.Рациональн.Числа.Упоряд.Множ.Положит.Чисел.
- •1.Понятие числовой функции.Прям.Пропорцион.И обрат.Пропорцион.Их св-во и график.
- •2.Мет.Работы над задачами на нахождение доли от числа и числа по его доле.
- •2.Методика формирования представл.О массе.Еденицы массы,их соотношение.
- •2.Методика изуч.Длины и формиров.Навыков ее измерения.Ознакомление с ед.Длины и их соотнош.
- •1.Понятие уравнен.С одной переменной.Равносильные уравнения.Теорема о равносильности уравнений.
- •2.Ознакомл.Уч-ся с ед.Времени и их соотнош.
- •1.Натур.Число как результ.Измерения величин.Смысл действия над натур.Числами,явл.Знач.Величин.
- •2.Методика изуч.Нумерации многознач.Чисел.
- •1.Понятие площади и ее измерение.Измерение площади фигуры при помощи палетки.
- •2.Методика обуч.Письменным приемам умножения.
- •Методика работы над задачами на движение
6.2Методика изучения устной и письменной нумерации чисел в пределах ста.
– Концентр чисел - группа чисел, изучающихся отдельно по общим принципам, методам программным требованиям.
– Нумерация чисел - образование числа, обозначение, счёт, предметное соотношение, место числа в числовом ряду, сравнение чисел, состав числа.
Обучение математике в начальных классах начинается с подготовительных занятий. Необходимость их диктуется чрезвычайной неоднородностью состава учащихся 1 класса, как по своим психофизическим данным, так и по подготовленности к обучению.
Задачами подготовительного периода являются, во первых, выявление имеющихся у детей знаний, во-вторых, подготовка к изучению систематического курса математики, в третьих, усвоение правил поведения в коллективе (слушать, правильно понимать и выполнять требования учителя, правильно сидеть за партой, вставать, выходить из-за партой, повторять задание учителя, задавать вопросы, отвечать на вопросы учителя и т.д.), что создает возможность работы с классом в школе. При изучении нумерации в пределах 100 школьники должны получить следующие знания, умения и навыки:
1. Научится считать до 100 в прямом и обратном порядке единицами и десятками.
2. Уметь присчитывать и отсчитывать по 1, по 10 и равными числовыми группами (по 2, 5, 20) как отвлеченно, так и на предметных пособиях.
3. Уметь пользоваться порядковыми числительными.
4. Знать место каждого числа в натуральном ряду чисел в пределах 100, понимать свойство этого ряда: каждое число на единицу больше предшествующего и на единицу меньше последующего.
5. Понимать десятичный состав чисел. Уметь различить число на разрядные слагаемые и составить число из разрядных слагаемых.
6. Уметь сравнивать числа, т.е. определять, какое число больше или меньше другого, равно ему.
7. Уметь записывать и читать числа первой сотни, понимать поместное значение цифр в числе.
Изучение данной темы начинается с применения интерактивного метода а именно стратегии «Кластер», и «Категориальный отбор». Ученикам предлагается ключевое слово «Число». Каждый ученик пишет на своем листке бумаги любое слово предложение понятие и т.д. Связанное его словом «Число».
Обсудив это переходим к нумераций в переделах «100».
Изучение темы осуществится в два этапа: сначала изучаются числа от 11 до 20 а затем от 21 до 100.
При изучении данной темы, учащиеся должен получить следующие знания, умения и навыки:
1. Научиться считать до 100 в прямом и обратном порядке единицами и десятками;
2. Уметь пользоваться порядковыми числительными;
3. Понимать для состав чисел;
4. Уметь сравнивать число, т.е. определить какое число больше им меньше другого
5. Уметь записывать и читать числа первой сотки, понимать поместное значение цифр в числа.
6. Знать, что такое дециметр и метр
Изучение нумерации в пределах 100 для детей связано с преодолением ряда трудностей. В период изучения чисел в пределах 100 закладывается основа понимания сущности десятичной системы: из 10 простых счетных единиц образуется новая (составная) счетная единица - сотня. Вот эту закономерность учащиеся усваивают с большим трудом. Здесь требуется основательная наглядная база, постоянное сравнение чисел первого, второго десятков и чисел 21-99, например: 2 и 20, 2 и 12, 1, 10, 100 и т.д. Учащиеся испытывают затруднения в запоминании названий круглых десятков, их последовательности и особенно их счете в прямом и обратном порядке. С большим трудом они запоминают названия десятков сорок и девяносто. Нередко по аналогии с образованием предыдущих числительных они соответственно называют их: «четырнадцать», «девять - десять», а при переходе к новому десятку считают: «двадцать девять, двадцать десять, двадцать одиннадцать» и т.д. Как при изучении предыдущих чисел, учащихся больше всего затрудняет счет в обратном порядке, присчитывание и отсчитывание равными числовыми группами. При изучении письменной нумерации многие учащиеся долго не усваивают позиционное значение цифр в числе: вместо 35 записывают 5З, при чтении чисел вначале произносят единицу, а потом десятки. Некоторые учащиеся, усвоив образование новых десятков, ещё долгое время испытывают затруднения в понимании образовании числа 100. Овладев устной нумерацией, некоторые учащиеся не могут овладеть письменной нумерацией. Некоторые наоборот, правильно записывают числовой ряд, а при устном пересчете допускают ошибки. Причины этих трудностей заключаются в трудностях самого математического материала, психических особенностях учащихся и в имеющих еще место недостатках организации изучения данного материала. Некоторая поспешность в отказе от использования наглядных пособий, недостаточное их разнообразие, недостаточное количество упражнений на закрепление данного материала при изучении последующих тем тоже приводят к затруднениям.
Последовательность изучения нумерации в пределах 100: повторение нумерации в пределах 10 и 20; изучения нумерации круглых десятков: изучение нумерации чисел от 21 до 99 (сначала устной, затем письменной).
Составьте план беседы для разбора задачи: «На одной улице поселка 46 домов, на другой на 5 домов больше, чем на первой, а на третьей их столько, сколько на первой и второй вместе. Сколько домов на третьей улице?»
№7.1. Отношения на множестве, способы задания отношений. Свойства отношений.
Отношением между элементами множества Х или отношением на множестве Х называется всякое подмножество декартова произведения Х*Х. Обозначаются латинскими буквами P,Q,R,S, если R - отношения между элементами множества Х, то R Х*Х. Отношения можно представить наглядно, при помощи особых чертежей, состоящих из точек, соединенных стрелками. Такие чертежи называют графами. Способы заданий отношений: 1. Перечислив все пары элементов.
Х= «4,5,6,7,9» , запишем множество пар: R= «(5,4)(6,4)(7,4)(9,4)(9,5)(9,6)(9,7)(6,5)(7,6)». |
|
2. Указав характеристическое свойство всех пар элементов. |
|
Свойства отношений. Отношение называется рефлексивным, если о нем можно сказать, что он находится в отношении с самим собой. На графе изображают петлей.