
- •Определители и их св-ва.
- •Миноры и алгебраические дополнения
- •Методы вычисления определителей
- •Обратная матрица. Теорема о существ обратной матрицы.
- •Элементарные преобразования матрицы.
- •Ранг матрицы. Правило вычисления ранга матрицы.
- •Системы n линейных алгебраических уравнений с n неизвестными
- •Правило Крамера
- •Теорема Кронекера-Капелли.
- •Метод Гаусса.
- •Вектора. Коорд вектора в декартовой системе координат.
- •Направляющие косинусы вектора
- •Скалярное произведение векторов. Его свойства.
- •.Векторное произведение векторов. Его св-ва.
- •Смешанное произведения векторов
- •Общее уравнение плоскости
- •Уравн плоскости проходящей через три точки в отрезках
- •Параметрическое и каноническое уравнение прямой
- •Уравнение прямой, проходящей через 2 точки
- •Уравнением прямой с угловым коэффициентом k.
- •Угол между прямыми на плоскости.
- •Эллипс. Каноническое уравнение.
- •Каноническое уравнение гиперболы
- •Парабола. Каноническое уравнение.
- •Функция. Характеристики поведения. Сложная функция.
- •Пределы функций, их свойства.
- •Теоремы о пределах.
- •Первый замечательный предел.
- •Второй замечательный предел( показательно-степенной предел)
- •Непрерывность функции в точке. Свойства непрерывных функций.
- •Точки разрыва функции. Их классификации.
- •Производная функции, ее геометрический смысл.
- •Основные правила дифференцирования
- •Дифференцирование тригонометрических и обратных им функций.
- •Дифференцирование логарифмических, показательных и степенных функций
- •Логарифмическое дифференцирование
- •Дифференцирование обратных функций и функций заданных параметрически
- •Дифференциал функции. Геометрический смысл дифференциала.
- •Формула Тейлора.
- •Возрастание и убывание функций. Точки экстремума.
- •Необходимое условие существования экстремума.
- •Критические точки. Достаточные условия существования экстремума.
- •Исследование функции на экстремум с помощью производных высших порядков.
- •Выпуклость и вогнутость кривой. Точки перегиба.
- •Асимптоты.
- •Функции нескольких переменных (Определение, примеры).
- •Пределы функции нескольких переменных и их свойства
- •Частное и полное приращение функций нескольких переменных.
- •Непрерывность функции нескольких переменных их св-ва
- •Частные производные первого и высших порядков
- •Теорема о смешанных производных второго порядка
- •Полный дифференциал.
- •Касательная плоскость и нормаль к поверхности.
- •Формула Тейлора для функций нескольких переменных
- •Экстремум функции нескольких переменных.
- •Необходимые и достаточные условия существования безусловного экстремума.
- •Максимум и минимум функции нескольких переменных.
- •Первообразная.
- •Неопределенный интеграл и его свойства
- •Замена переменных в неопределенном интеграле
- •Простейшие приемы интегрирования. Интегрирование по частям.
- •Простейшие приемы интегрирования. Интегрирование способом замены переменной.
- •Разложение рациональных дробей на простейшие.
- •Интегрирование элементарных дробей.
- •Интегрирование рациональных функций
- •Интегрирование иррациональных функций.
- •Интегрирование тригонометрических функций
- •Задачи, приводящие к понятию определенного интеграла
- •Верхние и нижние интегральные суммы
- •Определенный интеграл, его свойства и простейшие методы интегрирования
- •Основные свойства определенного интеграла.
- •Геометрический и физический смысл определенного интеграла.
- •Формула Ньютона-Лейбница.
- •Приложения определенного интеграла к решению геометрических и механических задач.
- •1. Площадь плоской фигуры.
- •2. Площадь криволинейного сектора.
- •3. Объем тела вращения.
- •4. Длина дуги кривой.
- •5. Площадь поверхности вращения.
- •Вычисление работы сил
- •Несобственные интегралы первого рода
- •Несобственные интегралы второго рода
- •Длина дуги кривой.
- •Вычисление площадей в прямоугольных координатах.
- •Вычисление объема тела.
- •Объем тела вращения
- •Двойной интеграл.
- •Вычисление двойного интеграла
- •Классификация точек разрыва функции
- •Числовой ряд, сумма ряда.
- •Необходимое условие сходимости ряда.
- •Доказательство
- •Признаки сравнения. Признак Даламбера.
- •Признаки сравнения. Признак Коши.
- •Интегральный признак Коши
- •Интегральный сходимости знакопостоянных рядов.
- •Знакочередующийся ряд. Теорема Лейбница.
- •Степенной ряд. Теорема Абеля.
- •Интервал и радиус сходимости степенного ряда.
- •Дифференциальные уравнения первого порядка. Общее и частное решения.
- •Уравнения с разделенными и разделяющимися переменными.
- •Однородные уравнения первого порядка.
- •. Линейные однородные дифференциальные уравнения. Решение уравнения.
- •Уравнения в полных дифференциалах.
Основные свойства определенного интеграла.
I. Величина определенного интеграла не зависит от обозначения переменной интегрирования, т.е., где х, t – любые буквы.
II. Определенный интеграл с одинаковыми пределами интегрирования равен нулю.
III. При перестановке пределов интегрирования определенный интеграл меняет свой знак на обратный.
IV. Если промежуток интегрирования [a,b] разбит на конечное число частичных промежутков, то определенный интеграл, взятый по промежутке [a,b], равен сумме определенных интегралов, взятых по всем его частичным промежуткам.
V. Постоянный множитель можно выносить за знак определенного интеграла.
VI. Определенной интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме определенных интегралов от этих функций.
Геометрический и физический смысл определенного интеграла.
Геометрический.
Определённый интеграл
численно равен площади фигуры,
ограниченной осью абсцисс, прямыми
и
и графиком функции
.
Физический. Путь S, пройденный телом при прямолинейном движении со скоростью v(t) за интервал времени от t1 до t2, вычисляется по формуле
Формула Ньютона-Лейбница.
Формула Ньютона — Лейбница или основная теорема анализа даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной.
Пусть функция f (x) непрерывна на [a; b], а F (x) – какая-либо первообразная функции f на этом отрезке. Тогда
|
Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f, вычислить ее значения в точках a и b и найти разностьF (b) – F (a).
Приложения определенного интеграла к решению геометрических и механических задач.
Геометрические приложения:
1. Площадь плоской фигуры.
Площадь криволинейной трапеции, ограниченной неотрицательной функцией f (x), осью абсцисс и прямыми x = a, x = b, определяется как
|
2. Площадь криволинейного сектора.
Рассмотрим кривую ρ = ρ (φ) в полярной системе координат, где ρ (φ) – непрерывная и неотрицательная на [α; β] функция. Фигура, ограниченная кривой ρ (φ) и лучами φ = α, φ = β, называется криволинейным сектором. Площадь криволинейного сектора равна
|
3. Объем тела вращения.
Пусть тело образовано вращением вокруг оси OX криволинейной трапеции, ограниченной непрерывной на отрезке [a; b] функцией f (x). Его объем выражается формулой
|
Пусть тело заключено между плоскостями x = a и x = b, а площадь его сечения плоскостью, проходящей через точку x, – непрерывная на отрезке [a; b] функция σ (x). Тогда его объем равен
|
4. Длина дуги кривой.
Пусть задана кривая
.
Тогда длина ее участка, ограниченного
значениями t = α и t = β выражается
формулой
|
|