Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан ответы частично.docx
Скачиваний:
5
Добавлен:
23.09.2019
Размер:
671.77 Кб
Скачать
  1. Теорема об общем решении (о структуре общего решения) нормальной системы неоднородных линейных оду.

Рассмотрим неоднородную линейную систему обыкновенных дифференциальных уравнений n-го порядка

 Здесь A

Справедлива следующая теорема о структуре общего решения этой неоднородной линейной системы ОДУ.

Если матрица A(x) и вектор-функция b(x) непрерывны на [a, b], и пусть Φ(x) — фундаментальная матрица решений однородной линейной системы , то общее решение неоднородной системы Y' = A(x)Y + b(x) имеет вид:

где C — произвольный постоянный вектор-столбец, x0 — произвольная фиксированная точка из отрезка [a, b].

Из приведенной формулы легко получить формулу решения задачи Коши для линейной неоднородной системы ОДУ — формулу Коши.

Решением задачи Коши , Y(x0) = Y0 является вектор-функция

  1. Метод вариации произвольных постоянных для отыскания частных решений нормальной системы неоднородных линейных оду.

Определение системы неоднородных линейных ОДУ. Система ОДУ вида:

называется линейной неоднородной. Пусть

Система (*) в векторно-матричном виде: . - система однородная, иначе – неоднородная.

Сам метод. Пусть имеется линейная неоднородная система , тогда - линейная однородная система, соответствующая линейной неоднородной. Пусть – фундаментальная матрица системы решений, , где C – произвольный постоянный вектор, - общее решение системы. Станем искать решение системы (1) в виде , где C(x) – неизвестная (пока) вектор-функция. Хотим, чтобы вектор-функция (3) была решением системы (1). Тогда должно быть справедливо тождество:

(произвольный постоянный вектор, который получается в результате интегрирования, можно считать равным 0). Здесь точки x0, – любые.

Видим, таким образом, что если в (3) в качестве C(t) брать , то вектор-функция будет решением системы (1).

Общее решение линейной неоднородной системы (1) может быть записано в виде . Пусть требуется найти решение системы (1), удовлетворяющее начальному условию . Подстановка (4) начальных данных (5) даёт . Следовательно, решение задачи Коши (1)-(5) может быть записано в виде: . В частном случае, когда , последняя формула принимает вид: .

  1. Фундаментальная система решений нормальной системы однородных линейных оду с постоянными коэффициентами в случае простых действительных корней характеристического уравнения.

Нормальная линейная однородная система n порядка с постоянными коэффициентами - или , Коэффициенты линейных комбинаций искомых функций постоянны. Эта система в матричной форме –матричная форма, где A-постоянная матрица. Матричный метод: Из характеристического уравнения найдем различные корни и для каждого корня (с учетом его кратности) определим соответствующее ему частное решение . Общее решение имеет вид: . При этом 1) если - действительный корень кратности 1, то , где -собственный вектор матрицы А, соответствующий собственному значению , то есть . 2) корень кратности , то соответствующее этому корню решение системы ищут в виде вектора (**), коэффициенты которого определяются из системы линейных уравнений, получающихся приравнивание коэффициентов при одинаковых степенях x в результате подстановки вектора (**) в исходную систему.

Фундаментальной системой решений НЛОС называется совокупность произвольных n линейно независимых решений

  1. Фундаментальная система решений нормальной системы однородных линейных ОДУ с постоянными коэффициентами в случае, когда все корни характеристического уравнения простые, но имеются комплексные корни.

Вопрос убран.

  1. Линейно-зависимые и линейно-независимые системы функций. Необходимое условие линейной зависимости. Теорема об определителе Вронского решений однородного линейного ОДУ.

Вопрос убран.

  1. Теорема об общем решении (о структуре общего решения) однородного линейного ОДУ.

Линейное однородное ОДУ: .

Теорема о структуре общего решения линейного однородного уравнения:

Если все коэффициенты уравнения линейного однородного дифференциального уравнения непрерывны на отрезке [a;b] , а функции y1(x), y2(x),..., yn(x) линейно независимые решения этого уравнения, то общее решение уравнения имеет вид , где C1,...,Cn — произвольные постоянные.

  1. Теорема об общем решении (о структуре общего решения) неоднородного линейного ОДУ.

Неоднородное линейное ОДУ: , где .

Краткое определение теоремы для заучивания: Для нахождения общего решения неоднородного уравнения достаточно найти одно какое-нибудь частное решение этого уравнения и прибавить к нему общее решение соответствующего однородного уравнения.

Формулировка по-другому: Если все коэффициенты уравнения линейного однородного дифференциального уравнения непрерывны на отрезке [a;b], а функции y1(x), y2(x),..., yn(x) образуют фундаментальную систему решений соответствующего однородного уравнения, то общее решение неоднородного уравнения имеет вид:

где C1,...,Cn — произвольные постоянные, y*(x) — частное решение неоднородного уравнения.