Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций Дискретная математика.doc
Скачиваний:
100
Добавлен:
22.09.2019
Размер:
3.74 Mб
Скачать

Лекция № 13. Язык логики предикатов.

  1. Предикаты.

Определение. Предикатом называется функция , где произвольное множество, а определённое ранее двоичное множество .

Иначе говоря, местным предикатом, определённым на множестве называется двузначная функция от аргументов из произвольного множества . Множество называется предметной областью предиката, переменные - предметными переменными. В принципе, можно определить предикат как функцию , то есть допустить, что переменные принимают значения из различных множеств – в некоторых случаях это оказывается удобным.

Для любых и существует взаимно однозначное соответствие между местными отношениями и местными предикатами на множестве , определяемое следующим образом. Каждому местному отношению соответствует предикат такой, что тогда и только тогда, когда ; всякий предикат определяет отношение такое, что тогда и только тогда, когда . При этом задаёт область истинности предиката.

Всякой функции можно поставить в соответствие местный предикат такой, что тогда и только тогда, когда . Поскольку функция должна быть однозначной, то это соответствие требует, чтобы для любого выполнялось . Поэтому обратное соответствие (от предиката к функции) возможно только при выполнении указанного условия.

В дальнейшем, в случаях, не вызывающих разночтения, будем употреблять одинаковые обозначения для предикатов и соответствующих им отношений. При этом, помимо функциональных обозначений вида , для двухместных предикатов будем пользоваться обозначениями вида , которые употреблялись ранее для бинарных отношений.

Пример 1.

а) Предикат является двухместным предикатом, предметной областью которого могут служить любые множества действительных чисел. Высказывание истинно, а высказывание ложно. Если вместо одной из переменных подставить число, то получится одноместный предикат: и так далее.

б) Великая теорема Ферма (до сих пор не доказанная) утверждает, что для любого натурального числа не существует натуральных чисел , которые удовлетворяли бы равенству . Этому равенству можно поставить в соответствие предикат , истинный тогда и только тогда, когда оно выполняется.

в) В описаниях вычислительных процедур и, в частности, в языках программирования, часто встречаются указания типа “повторять цикл до тех пор, пока переменные и не станут равными или прекратить вычисление цикла после ста повторений”. Если обозначить через счётчик повторений, то описанное здесь условие примет вид , а само указание в целом описывается выражением: “повторять, если ”.

  1. Кванторы.

Пусть предикат, определённый на множестве . Высказывание “для всех истинно” обозначается или . Здесь множество входит в обозначение, но когда оно ясно из контекста пишут просто . Знак называется квантором общности.

Высказывание “существует такое значение , что истинно” обозначается или . Знак называется квантором существования. Переход от предиката к выражениям вида или называется связыванием переменной , а также навешиванием квантора на переменную (или на предикат ). Переменная, на которую навешен квантор, называется связанной, несвязанная переменная называется свободной.

Смысл связанных и свободных переменных в предикатах принципиально различен. Свободная переменная – это обычная переменная, которая может принимать различные значения из множества ; выражение - переменное высказывание, зависящее от значения . Выражение не зависит от переменной и имеет вполне определённое значение. Это, в частности, означает, что переименование связанной переменной, то есть переход от выражения к выражению и наоборот не меняет истинности выражения. Переменные, являющиеся, по существу, связанными, встречаются не только в логике. Например, в выражениях или переменная связана: при фиксированной функции первое выражение равно определенному числу, а второе становится функцией от пределов интегрирования.

Навешивать кванторы можно и на многоместные предикаты и вообще на любые логические выражения, которые при этом заключаются в скобки. Выражение, на которое навешивается квантор или называется областью действия квантора. Все вхождения переменной в это выражение являются связанными. Навешивание квантора на многоместный предикат уменьшает в нём количество свободных переменных и превращает его в предикат от меньшего числа переменных.

Пример 2.

а) Пусть предикат “ чётное число”. Тогда высказывание истинно на любом множестве чётных чисел и ложно, если множество содержит хотя бы одно нечётное число. Высказывание истинно на любом множестве, содержащем хотя бы одно чётное число и ложно на любом множестве нечётных чисел.

б) Рассмотрим двухместный предикат на множествах с отношением нестрогого порядка. Предикат есть одноместный предикат от переменной . Если множество неотрицательных чисел, то этот предикат истинен в единственной точке . Предикат (можно записать ) высказывание истинное на множестве, состоящем из одного элемента и ложное на всяком другом множестве. Высказывание утверждает, что в множестве имеется максимальный элемент (для любого существует такой , что ). Оно истинно на любом конечном множестве целых чисел. Высказывание утверждает, что для любого элемента имеется элемент , не меньший его. Оно истинно на любом непустом множестве ввиду рефлексивности отношения . Последние два высказывания говорят о том, что перестановка кванторов меняет смысл высказывания и условие его истинности.