
- •1.Сутність економіко-математичної моделі.
- •2.Необхідність використання математичного моделювання економічних процесів.
- •3.Етапи математичного моделювання.
- •4.Випадковість і невизначеність процесів економічних систем.
- •5.Причини виникнення невизначеності.
- •6.Сутність адекватності економіко-математичних моделей.
- •7.Проблеми оцінювання адекватності моделі.
- •8.Способи перевірки адекватності економіко-математичних моделей.
- •9.Елементи класифікації економіко-математичних моделей.
- •10.Загальна постановка задачі математичного програмування Приклади економічних задач математичного програмування.
- •11.Класифікація задач математичного програмування.
- •12.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •13.Канонічна та стандартна форми задачі лінійного програмування.
- •14.Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •15.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •16.Ідея симплексного методу розв’язування задач лінійного програмування.
- •17.Побудова початкового опорного плану задачі лінійного програмування.
- •18.Перехід від одного опорного плану до іншого опорного плану.
- •19.Теореми про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •20.Симплексна таблиця для розв’язування задач лінійного програмування.
- •21.Алгоритм симплексного методу задач лінійного програмування.
- •22.Симплексний метод із штучним базисом.
- •23.Особисті випадки при вирішенні задач лінійного програмування.
- •24.Двоїста задача. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •25.Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •26.Перша теорема двоїстості.
- •27.Друга теорема двоїстості.
- •28.Економічна інтерпретація теорем двоїстості.
- •30.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •31.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •32.Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •33.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •50. Множинний коефіцієнт кореляції:
- •64.Визначення мультиколінеарності в лінійних моделях.
- •65.Суть гетероскедастичності та її наслідки.
- •66.Тест Гельдфельда-Квандта.
- •67.Узагальнений метод найменших квадратів.
- •68.Суть та наслідки автокореляції залишків.
- •69.Критерій Дарбіна-Уотсона.
- •70.Оцінювання параметрів моделі з автокорельованими залишками.
- •71.Ризик, невизначеність та конфліктність розвитку соціально-економічних процесів
- •72.Ризик як економічна категорія. Джерело, об`єкт та суб`єкт економічного ризику.
- •73.Зовнішні та внутрішні чинники ризику.
- •74.Класифікація ризику.
- •75.Основні підходи до кількісного аналізу ризику.
- •76.Аналіз ризику за допомогою методу аналізу чутливості.
- •77.Аналіз ризику можливих збитків.
- •78.Допустимий, критичний, катастрофічний ризик. Приклади кількісного визначення цих величин.
- •79.Загальні підходи до кількісного оцінювання ступеня ризику.
- •80.Імовірність як один з підходів до оцінювання ступеня ризику.
- •81.Кількісні показники ступеня ризику в абсолютному вираженні.
- •82.Ризик як міра мінливості результату.
- •83.Семіваріація та семіквадратичне відхилення.
- •84.Кількісні показники ступеня ризику у відносному вираженні.
- •85.Коефіцієнт сподіваних збитків.
- •86.Коефіцієнти асиметрії та варіації асиметрії.
- •87.Коефіцієнт ексцесу та варіації ексцесу.
- •88.Визначення меж зон допустимого, критичного та катастрофічного ризиків.
- •93.“Систематичний ризик” та “специфічний ризик”.
- •94.Основні принципи управління економічним ризиком.
- •95.Зовнішні та внутрішні способи зниження ступеня ризику.
11.Класифікація задач математичного програмування.
У мат. програмуванні виділяють два напрямки—детерміновані задачі та стохастичні. Детерміновані задачі не містять випадкових змінних чи параметрів. Уся початкова інформація повністю визначена. У стохастичних задачах використовується вхідна інформація, яка містить елементи невизначеності, або деякі параметри набувають значень відповідно до визначених функцій розподілу випадкових величин.
Детерміновані задачі можуть бути статичними (однокроковими) або динамічними (багатокроковими). Оскільки економічні процеси розвиваються в часі, відповідні економіко-математичні моделі мають відображати їх динаміку. Поняття динамічності пов'язане зі змінами об'єкта (явища, процесу) у часі.
Важливо чітко усвідомити відмінність між одно- та багатокроковими задачами. Багатокроковість як метод розв'язування задач математичного програмування зумовлюється, насамперед, багатовимірністю задачі й означає, що послідовно застосовуючи індукцію, крок за кроком знаходять оптимальні значення множини змінних, причому отриманий на кожному кроці розв'язок має задовольняти умови оптимальності попереднього розв'язку. Така процедура може бути більш чи менш тісно пов'язана з часом. Однокрокові задачі, навпаки, характеризуються тим, що всі компоненти оптимального плану задачі визначаються водночас на останній ітерації (останньому кроці) алгоритму. Деякі задачі математичного програмування можна розглядати як одно- або багатокрокові залежно від способу їх розв'язання. Якщо задачу можна розв'язувати як однокрокову, то розв'язувати її як багатокрокову недоцільно, бо в такому разі для знаходження оптимального плану необхідно застосовувати складніші методи.
Задачі математичного програмування поділяють також на дискретні і неперервні. Дискретними називають задачі, в яких одна, кілька або всі змінні набувають лише дискретних значень. З-поміж них окремий тип становлять задачі, в яких одна або кілька змінних набувають цілочислових значень. їх називають задачами цілочислового програмування. Якщо всі змінні можуть набувати будь-яких значень на деяких інтервалах числової осі, то задача є неперервною.
Оскільки в економіко-математичних моделях залежності між показниками описані за допомогою функцій, то відповідно до їх виду всі вище згадані типи задач поділяють на лінійні та нелінійні. Якщо цільова функція є лінійними, тобто містять змінні X/ тільки у першому або нульовому степенях, то така задача є лінійною. В усіх інших випадках задача буде нелінійною.
Найпростішими з розглянутих типів є статичні, детерміновані, неперервні та лінійні задачі. Важливою перевагою таких задач є те, що для їх розв'язування розроблено універсальний метод, який називається симплексним методом. Для деяких типів лінійних задач, що мають особливу структуру, розробляють спеціальні методи розв'язання, які є ефективнішими.
У нелінійному програмуванні (залежно від функцій, які використовуються в економіко-математичній моделі) виокремлюють опукле та квадратичне програмування. Задача належить до опуклого програмування у тому разі, коли цільова функція вгнута, якщо вона мінімізується, та опукла, якщо вона максимізується, а всі обмеження — однотипні нерівності типу (<) або рівняння, в яких ліві частини є опуклими функціями, а праві частини — сталими величинами. У разі обмежень типу (>) їх ліві частини мають бути вгнутими функціями. Тоді область допустимих планів є опуклою та існує глобальний, єдиний екстремум. Квадратичне програмування — якщо цільова функція квадратична, а обмеження лінійні.
Як окремий тип розглядають дробово-лінійне програмування, коли обмеження є лінійними, а цільова функція — дробово-лінійна. Особливий тип становлять задачі теорії ігор, які широко застосовуються в ринковій економіці. Адже тут діють дві чи більше конфліктних сторін, які мають частково або повністю протилежні цілі.