
- •1.Сутність економіко-математичної моделі.
- •2.Необхідність використання математичного моделювання економічних процесів.
- •3.Етапи математичного моделювання.
- •4.Випадковість і невизначеність процесів економічних систем.
- •5.Причини виникнення невизначеності.
- •6.Сутність адекватності економіко-математичних моделей.
- •7.Проблеми оцінювання адекватності моделі.
- •8.Способи перевірки адекватності економіко-математичних моделей.
- •9.Елементи класифікації економіко-математичних моделей.
- •10.Загальна постановка задачі математичного програмування Приклади економічних задач математичного програмування.
- •11.Класифікація задач математичного програмування.
- •12.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •13.Канонічна та стандартна форми задачі лінійного програмування.
- •14.Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •15.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •16.Ідея симплексного методу розв’язування задач лінійного програмування.
- •17.Побудова початкового опорного плану задачі лінійного програмування.
- •18.Перехід від одного опорного плану до іншого опорного плану.
- •19.Теореми про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •20.Симплексна таблиця для розв’язування задач лінійного програмування.
- •21.Алгоритм симплексного методу задач лінійного програмування.
- •22.Симплексний метод із штучним базисом.
- •23.Особисті випадки при вирішенні задач лінійного програмування.
- •24.Двоїста задача. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •25.Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •26.Перша теорема двоїстості.
- •27.Друга теорема двоїстості.
- •28.Економічна інтерпретація теорем двоїстості.
- •30.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •31.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •32.Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •33.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •50. Множинний коефіцієнт кореляції:
- •64.Визначення мультиколінеарності в лінійних моделях.
- •65.Суть гетероскедастичності та її наслідки.
- •66.Тест Гельдфельда-Квандта.
- •67.Узагальнений метод найменших квадратів.
- •68.Суть та наслідки автокореляції залишків.
- •69.Критерій Дарбіна-Уотсона.
- •70.Оцінювання параметрів моделі з автокорельованими залишками.
- •71.Ризик, невизначеність та конфліктність розвитку соціально-економічних процесів
- •72.Ризик як економічна категорія. Джерело, об`єкт та суб`єкт економічного ризику.
- •73.Зовнішні та внутрішні чинники ризику.
- •74.Класифікація ризику.
- •75.Основні підходи до кількісного аналізу ризику.
- •76.Аналіз ризику за допомогою методу аналізу чутливості.
- •77.Аналіз ризику можливих збитків.
- •78.Допустимий, критичний, катастрофічний ризик. Приклади кількісного визначення цих величин.
- •79.Загальні підходи до кількісного оцінювання ступеня ризику.
- •80.Імовірність як один з підходів до оцінювання ступеня ризику.
- •81.Кількісні показники ступеня ризику в абсолютному вираженні.
- •82.Ризик як міра мінливості результату.
- •83.Семіваріація та семіквадратичне відхилення.
- •84.Кількісні показники ступеня ризику у відносному вираженні.
- •85.Коефіцієнт сподіваних збитків.
- •86.Коефіцієнти асиметрії та варіації асиметрії.
- •87.Коефіцієнт ексцесу та варіації ексцесу.
- •88.Визначення меж зон допустимого, критичного та катастрофічного ризиків.
- •93.“Систематичний ризик” та “специфічний ризик”.
- •94.Основні принципи управління економічним ризиком.
- •95.Зовнішні та внутрішні способи зниження ступеня ризику.
10.Загальна постановка задачі математичного програмування Приклади економічних задач математичного програмування.
Математичну систему можна подати в такому вигляді:
y1
y2
……ym
X1___
X2___ ____Z__
…
Xn___
C1, C2….,Cl
Параметри C1, C2….,Cl є кількісними характеристиками системи.
Частина параметрів С для певної системи може бути сталими величинами, а частина — змінними, тобто залежатиме від певних умов.
Змінні величини бувають незалежними чи залежними, дискретними чи неперервними, детермінованими або випадковими.
Вхідні змінні економічної системи бувають двох видів: керовані X( і= 1, 2, ..., п), значення яких можна змінювати в деякому інтервалі; і некеровані змінні У( і=1, 2,..., п), значення яких не залежать від волі людей і визначаються зовнішнім середовищем. Залежно від реальної ситуації керовані змінні можуть переходити у групу некерованих і навпаки.
Кількісною мірою ступеня досягнення мети є цільова функція, яка залежить від вхідних змінних та параметрів системи і позначаються:
Z= f(х1,х2, ...,хn; у1,у2,...,ym; с1,с2,...,сl).
Задача математичного програмування формується таким чином: Знайти такі значення керованих змінних (х1,х2, ...,хn),
щоб цільова функція набувала екстремального (максимального чи мінімального) значення.
Математична модель задачі має вигляд:
max (min)Z= f(х1,х2, ...,хn; у1,у2,...,ym; с1,с2,...,сl). (1)
Вибір керованих змінних обмежений зовнішніми умовами та параметрами системи.
qr (х1,х2, ...,хn; у1,у2,...,ym; с1,с2,...,сl){ <=, =, >=}0 r=1,2,,S (2)
додаткові обмеження зовнішніх умов та параметрів системи.
Умови невідємності:
Xj>=0, j=1,2,…,n (3)
Будь-який набір змінних х1, х2,..,хn, що задовольняє умови (2), (3), називають допустимим планом або допустимим розв’язком задачі.
Сукупність всіх допустимих розв’язків—область допустимих розв’язків.
Допустимий розвязок для якого цільова функція набуває екстремального значення називається оптимальним і позначається: Х*=(Х1*, Х2*,..,Хn*)
Приклади задач мат. програм.:
Задача визначення оптимального плану виробництва: для деякої виробничої системи (цеху, підприємства, галузі) необхідно визначити план випуску кожного виду продукції за умови найкращого способу використання наявних ресурсів. Критерії оптимальності: максимум прибутку, максимум товарної продукції, мінімум витрат ресурсів.
Задача про «дієту» (або про суміш): деякий раціон складається з кількох видів продуктів. Необхідно знайти оптимальний раціон — кількість кожного виду продукту, що враховує вимоги забезпечення організму необхідною кількістю поживних речовин.
Критерій оптимальності — мінімальна вартість раціону.
Транспортна задача: розглядається певна кількість пунктів виробництва та споживання деякої однорідної продукції (кількість пунктів виробництва та споживання не збігається). Необхідно визначити оптимальні обсяги перевезень продукції, за яких були б найкраще враховані необхідності вивезення продукції від виробників та забезпечення вимог споживачів.
Критерії оптимальності: мінімальна сумарна вартість перевезень, мінімальні сумарні витрати часу.
Задача оптимального розподілу виробничих потужностей: розглядаються кілька підприємств, що виготовляють певну кількість видів продукціїНеобхідно розподілити виробництво продукції між підприємствами у такий спосіб, щоб задовольнити потреби у виготовленні продукції та максимально використати виробничі потужності підприємств.
Критерій оптимальності: мінімальні сумарні витрати на виготовлення продукції.
Задача про призначення: нехай набір деяких видів робіт може виконувати певна чисельність кандидатів, причому кожного кандидата можна призначати лише на одну роботу і кожна робота може бути виконана тільки одним кандидатом. Розв'язком задачі є оптимальний розподіл кандидатів на посади.
Критерій оптимальності: максимальний сумарний ефект від виконання робіт.
Задача комівояжера: розглядається кілька міст. Комівояжеру необхідно, починаючи з міста, в якому він перебуває, обійти, не буваючи ніде двічі, всі міста і повернутися в початкове. Знайти оптимальний маршрут.
Критерій оптимальності: мінімальна сумарна вартість (відстань) пересування по маршруту.
Задача оптимального розподілу капіталовкладень. Планується діяльність групи (системи) підприємств протягом деякого періоду, який розділено на певну кількість підперіодів. Задана сума коштів, які можна вкладати в будь-яке підприємство чи розподіляти між ними протягом всього періоду планування. Необхідно визначити, як розподіляти кошти на початку кожного підперіоду між підприємствами так, щоб сумарний дохід за весь період був максимальним.