
- •1.Сутність економіко-математичної моделі.
- •2.Необхідність використання математичного моделювання економічних процесів.
- •3.Етапи математичного моделювання.
- •4.Випадковість і невизначеність процесів економічних систем.
- •5.Причини виникнення невизначеності.
- •6.Сутність адекватності економіко-математичних моделей.
- •7.Проблеми оцінювання адекватності моделі.
- •8.Способи перевірки адекватності економіко-математичних моделей.
- •9.Елементи класифікації економіко-математичних моделей.
- •10.Загальна постановка задачі математичного програмування Приклади економічних задач математичного програмування.
- •11.Класифікація задач математичного програмування.
- •12.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •13.Канонічна та стандартна форми задачі лінійного програмування.
- •14.Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •15.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •16.Ідея симплексного методу розв’язування задач лінійного програмування.
- •17.Побудова початкового опорного плану задачі лінійного програмування.
- •18.Перехід від одного опорного плану до іншого опорного плану.
- •19.Теореми про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •20.Симплексна таблиця для розв’язування задач лінійного програмування.
- •21.Алгоритм симплексного методу задач лінійного програмування.
- •22.Симплексний метод із штучним базисом.
- •23.Особисті випадки при вирішенні задач лінійного програмування.
- •24.Двоїста задача. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •25.Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •26.Перша теорема двоїстості.
- •27.Друга теорема двоїстості.
- •28.Економічна інтерпретація теорем двоїстості.
- •30.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •31.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •32.Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •33.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •50. Множинний коефіцієнт кореляції:
- •64.Визначення мультиколінеарності в лінійних моделях.
- •65.Суть гетероскедастичності та її наслідки.
- •66.Тест Гельдфельда-Квандта.
- •67.Узагальнений метод найменших квадратів.
- •68.Суть та наслідки автокореляції залишків.
- •69.Критерій Дарбіна-Уотсона.
- •70.Оцінювання параметрів моделі з автокорельованими залишками.
- •71.Ризик, невизначеність та конфліктність розвитку соціально-економічних процесів
- •72.Ризик як економічна категорія. Джерело, об`єкт та суб`єкт економічного ризику.
- •73.Зовнішні та внутрішні чинники ризику.
- •74.Класифікація ризику.
- •75.Основні підходи до кількісного аналізу ризику.
- •76.Аналіз ризику за допомогою методу аналізу чутливості.
- •77.Аналіз ризику можливих збитків.
- •78.Допустимий, критичний, катастрофічний ризик. Приклади кількісного визначення цих величин.
- •79.Загальні підходи до кількісного оцінювання ступеня ризику.
- •80.Імовірність як один з підходів до оцінювання ступеня ризику.
- •81.Кількісні показники ступеня ризику в абсолютному вираженні.
- •82.Ризик як міра мінливості результату.
- •83.Семіваріація та семіквадратичне відхилення.
- •84.Кількісні показники ступеня ризику у відносному вираженні.
- •85.Коефіцієнт сподіваних збитків.
- •86.Коефіцієнти асиметрії та варіації асиметрії.
- •87.Коефіцієнт ексцесу та варіації ексцесу.
- •88.Визначення меж зон допустимого, критичного та катастрофічного ризиків.
- •93.“Систематичний ризик” та “специфічний ризик”.
- •94.Основні принципи управління економічним ризиком.
- •95.Зовнішні та внутрішні способи зниження ступеня ризику.
82.Ризик як міра мінливості результату.
Нехай в якості центра групування значень економічного показника використовується його математичне сподівання. Тоді середньозважене модуля відхилення цього показника від свого математичного сподіваного у дискретному випадку можна знайти за формулою:
.
Якщо ж в якості центра групування значень економічного показника використати моду, то середньозважене відхилення від модального значення у дискретному випадку знаходять за формулою:
.
У ситуації, коли адекватною моделлю економічного показника є неперервна випадкова величина
М(|X
– M(X)|)
=
|X
– M(X)|
f(x)dx,
М(|X
– Mo(X)|)
=
|X
– Mo(X)|
f(x)dx,
де f(x) — функція щільності розподілу ймовірності.
Очевидно, що більші значення приведених оцінок свідчать про більшу нестабільність щодо діяльності відповідного економічного об’єкта. В якості величини ризику і використовується ця міра нестабільності, тобто:
W = M(|X – M(X)|),
або ж
W = M(|X – Mo(X)|).
Слід мати на увазі, що даний підхід до оцінки ризику застосовується у випадку, коли екон показник може мати як позитивний, так і негативний інгредієнт (тобто Х = Х ).
При абсолютному вираженні міри ризику під час прийняття економічних рішень широко використовується дисперсійний підхід.
Дисперсією (варіацією) V(X) випадкової величини Х є зважена щодо ймовірності величина квадратів відхилення випадкової величини Х від її математичного сподівання М(Х). Дисперсія характеризує міру розсіяння випадкової величини Х навколо М(Х) і обчислюється за формулою:
V(X) = M(X – M(X))2 = M(X2) – (M(X))2.
Для дискретної випадкової величини
Середньоквадратичним (стандартним) відхиленням випадкової величини Х називається величина
Підхід до оцінки ризику, що спирається на варіацію чи середньоквадратичне відхилення, вважається класичним. Причому чим більшими будуть ці величини, тим більшим буде ступінь ризику, пов’язаного з певною стратегією, тобто величина ризику
W = V(X) або W = (X).
Слід зазначити, що такий підхід до оцінки ступеня ризику використовується, коли Х = Х .
83.Семіваріація та семіквадратичне відхилення.
Сучасний підхід до оцінювання ризику базується на тому, що ризик пов’язаний саме з несприятливими для менеджера (інвестора) ефектами, тож для його оцінювання достатньо брати до уваги лише несприятливі відхилення від сподіваної величини. Як оцінка ризику в цьому випадку використовується семіваріація:
У практичному плані зручніше застосовувати сем квадратичне відхилення:
Чим більше SV(X) чи SSV(X), тим більшим буде ступінь ризику.
84.Кількісні показники ступеня ризику у відносному вираженні.
Треба зазначити, що у відносному вираженні оцінка ступеня ризику визначається як величина збитків, віднесена до певної бази, за яку найзручніше брати або майно підприємця, або загальні витрати ресурсів на цей вид підприємницької діяльності, або очікуваний прибуток. У відносному вираженні оцінку ступеня ризику іноді визначають за допомогою коефіцієнта ризику:
Де W- коефіцієнт ризику, х — максимально можливий обсяг збитків (грош. од.), К— обсяг власних фінансових ресурсів з урахуванням точно відомих надходжень коштів.
Коли сподівані доходи одного проекту відрізняються від сподіваних доходів іншого проекту і стає недостатнім порівнювати лише показники варіації, тоді використовують коефіцієнт варіації обчислюваний за формулою:
Коефіцієнту варіації можна надати таке економічне тлумачення: це величина ризику відхилень, що припадає на одиницю сподіваного доходу.
У випадку використання семіквадратичного відхилення для оцінювання ризику у відносному вираженні обчислюють коефіцієнт семіваріації: