
- •1.Сутність економіко-математичної моделі.
- •2.Необхідність використання математичного моделювання економічних процесів.
- •3.Етапи математичного моделювання.
- •4.Випадковість і невизначеність процесів економічних систем.
- •5.Причини виникнення невизначеності.
- •6.Сутність адекватності економіко-математичних моделей.
- •7.Проблеми оцінювання адекватності моделі.
- •8.Способи перевірки адекватності економіко-математичних моделей.
- •9.Елементи класифікації економіко-математичних моделей.
- •10.Загальна постановка задачі математичного програмування Приклади економічних задач математичного програмування.
- •11.Класифікація задач математичного програмування.
- •12.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •13.Канонічна та стандартна форми задачі лінійного програмування.
- •14.Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •15.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •16.Ідея симплексного методу розв’язування задач лінійного програмування.
- •17.Побудова початкового опорного плану задачі лінійного програмування.
- •18.Перехід від одного опорного плану до іншого опорного плану.
- •19.Теореми про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •20.Симплексна таблиця для розв’язування задач лінійного програмування.
- •21.Алгоритм симплексного методу задач лінійного програмування.
- •22.Симплексний метод із штучним базисом.
- •23.Особисті випадки при вирішенні задач лінійного програмування.
- •24.Двоїста задача. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •25.Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •26.Перша теорема двоїстості.
- •27.Друга теорема двоїстості.
- •28.Економічна інтерпретація теорем двоїстості.
- •30.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •31.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •32.Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •33.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •50. Множинний коефіцієнт кореляції:
- •64.Визначення мультиколінеарності в лінійних моделях.
- •65.Суть гетероскедастичності та її наслідки.
- •66.Тест Гельдфельда-Квандта.
- •67.Узагальнений метод найменших квадратів.
- •68.Суть та наслідки автокореляції залишків.
- •69.Критерій Дарбіна-Уотсона.
- •70.Оцінювання параметрів моделі з автокорельованими залишками.
- •71.Ризик, невизначеність та конфліктність розвитку соціально-економічних процесів
- •72.Ризик як економічна категорія. Джерело, об`єкт та суб`єкт економічного ризику.
- •73.Зовнішні та внутрішні чинники ризику.
- •74.Класифікація ризику.
- •75.Основні підходи до кількісного аналізу ризику.
- •76.Аналіз ризику за допомогою методу аналізу чутливості.
- •77.Аналіз ризику можливих збитків.
- •78.Допустимий, критичний, катастрофічний ризик. Приклади кількісного визначення цих величин.
- •79.Загальні підходи до кількісного оцінювання ступеня ризику.
- •80.Імовірність як один з підходів до оцінювання ступеня ризику.
- •81.Кількісні показники ступеня ризику в абсолютному вираженні.
- •82.Ризик як міра мінливості результату.
- •83.Семіваріація та семіквадратичне відхилення.
- •84.Кількісні показники ступеня ризику у відносному вираженні.
- •85.Коефіцієнт сподіваних збитків.
- •86.Коефіцієнти асиметрії та варіації асиметрії.
- •87.Коефіцієнт ексцесу та варіації ексцесу.
- •88.Визначення меж зон допустимого, критичного та катастрофічного ризиків.
- •93.“Систематичний ризик” та “специфічний ризик”.
- •94.Основні принципи управління економічним ризиком.
- •95.Зовнішні та внутрішні способи зниження ступеня ризику.
67.Узагальнений метод найменших квадратів.
Економетрична модель, якій притаманна гетероскедастичність, є узагальненою моделлю, і для оцінювання її параметрів слід скористатися узагальненим методом найменших квадратів.
Вираз для оцінки параметрів за методом Ейткена (мнк) записується так:
Вектор А^ у такому разі містить незміщену лінійну оцінку параметрів моделі, яка має найменшу дисперсію і матрицю коваріацій
Коли параметри моделі оцінюються за методом Ейткена, то загальна сума квадратів залежної змінної розбивається на суму квадратів регресії і суму квадратів залишків:
68.Суть та наслідки автокореляції залишків.
Автокореляція — це наявність взаємозв'язку між послідовними елементами часового чи просторового ряду даних В економетричних дослідженнях часто виникають такі ситуації, коли дисперсія залишків є сталою, але спостерігається їх ко-варіація. Це явище називають автокореляцією залишків. Автокореляція залишків найчастіше спостерігається тоді, коли економетрична модель будується на основі часових рядів. Якщо існує кореляція між послідовними значеннями деякої пояснювальної змінної, то буде спостерігатись і кореляція послідовних значень залишків. Автокореляція може бути також наслідком помилкової специфікації економетричної моделі, зокрема наявність автокореляції залишків може означати, що необхідно ввести до моделі нову незалежну змінну.
Наслідки:
1. Оцінки параметрів моделі можуть бути незміщеними, але неефективними, тобто вибіркові дисперсії вектора оцінок А можуть бути невиправдано великими.
2. Оскільки вибіркові дисперсії обчислюються не за уточненими формулами, то статистичні критерії і- і /^-статистики, які знайдено для лінійної моделі, практично не можуть бути використані в дисперсійному аналізі при автокореляції.
3. Неефективність оцінок параметрів економетричної моделі призводить, як правило, до неефективних прогнозів, тобто прогнозів з доволі великою вибірковою дисперсією.
69.Критерій Дарбіна-Уотсона.
Для перевірки наявності автокореляції залишків найчастіше застосовується критерій Дарбіна—Уотсона (DW):
який може набувати значень із проміжку [0,4]: DWє[0,4]
Якщо залишки и, є випадковими величинами, нормально розподіленими, а не автокорельованими, то значення DW містяться поблизу 2. За додатної автокореляції DW<2, а за від'ємної DW>2. Фактичні значення критерію порівнюються з критичними (табличними) для різної кількості спостережень п і кількості незалежних змінних т за вибраного рівня значущості α. Табличні значення мають нижню межу DW1 і верхню — DW2.Вибірковий розподіл значень критерію Дарбіна—Уотсона залежить від емпіричних спостережень пояснювальних змінних і, якщо взяти до уваги цю обставину, можна стверджувати: параметр ρ для генеральної сукупності має тісний зв'язок з критеріємDW. Якщо ρ= 1, то значення DW= 0, при ρ= 0 DW= 2 і при ρ= -1 значення критерію DW= 4. Наведені співвідношення показують, що існують області, в яких застосування критерію Дарбіна—Уотсона не може дати певних результатів, про що вже було сказано. Верхні та нижні межі критерію DW визначають межі цієї області для різних розмірів вибірки, заданої кількості пояснювальних змінних та певного рівня значущості. Коли фактичне значення DW потрапляє в межі від нуля до нижньої критичної межі DW1, то гіпотезу про наявність автокореляції необхідно прийняти. Якщо фактичне значення критерію DW потрапляє в межі від верхнього критичного рівня DW2 до двох, то гіпотезу про наявність автокореляції потрібно відхилити. Коли фактичне значення критерію DW міститься в межах від нижнього до верхнього критичного значення, то існує невизначеність щодо наявності автокореляції залишків. У цьому випадку гіпотезу про наявність автокореляції доцільніше прийняти, ніж відхилити. Якщо фактичне значення критерію DW більше від 2, то може йтись про від’ємну автокореляцію.