
- •1.Сутність економіко-математичної моделі.
- •2.Необхідність використання математичного моделювання економічних процесів.
- •3.Етапи математичного моделювання.
- •4.Випадковість і невизначеність процесів економічних систем.
- •5.Причини виникнення невизначеності.
- •6.Сутність адекватності економіко-математичних моделей.
- •7.Проблеми оцінювання адекватності моделі.
- •8.Способи перевірки адекватності економіко-математичних моделей.
- •9.Елементи класифікації економіко-математичних моделей.
- •10.Загальна постановка задачі математичного програмування Приклади економічних задач математичного програмування.
- •11.Класифікація задач математичного програмування.
- •12.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •13.Канонічна та стандартна форми задачі лінійного програмування.
- •14.Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •15.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •16.Ідея симплексного методу розв’язування задач лінійного програмування.
- •17.Побудова початкового опорного плану задачі лінійного програмування.
- •18.Перехід від одного опорного плану до іншого опорного плану.
- •19.Теореми про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •20.Симплексна таблиця для розв’язування задач лінійного програмування.
- •21.Алгоритм симплексного методу задач лінійного програмування.
- •22.Симплексний метод із штучним базисом.
- •23.Особисті випадки при вирішенні задач лінійного програмування.
- •24.Двоїста задача. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •25.Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •26.Перша теорема двоїстості.
- •27.Друга теорема двоїстості.
- •28.Економічна інтерпретація теорем двоїстості.
- •30.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •31.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •32.Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •33.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •50. Множинний коефіцієнт кореляції:
- •64.Визначення мультиколінеарності в лінійних моделях.
- •65.Суть гетероскедастичності та її наслідки.
- •66.Тест Гельдфельда-Квандта.
- •67.Узагальнений метод найменших квадратів.
- •68.Суть та наслідки автокореляції залишків.
- •69.Критерій Дарбіна-Уотсона.
- •70.Оцінювання параметрів моделі з автокорельованими залишками.
- •71.Ризик, невизначеність та конфліктність розвитку соціально-економічних процесів
- •72.Ризик як економічна категорія. Джерело, об`єкт та суб`єкт економічного ризику.
- •73.Зовнішні та внутрішні чинники ризику.
- •74.Класифікація ризику.
- •75.Основні підходи до кількісного аналізу ризику.
- •76.Аналіз ризику за допомогою методу аналізу чутливості.
- •77.Аналіз ризику можливих збитків.
- •78.Допустимий, критичний, катастрофічний ризик. Приклади кількісного визначення цих величин.
- •79.Загальні підходи до кількісного оцінювання ступеня ризику.
- •80.Імовірність як один з підходів до оцінювання ступеня ризику.
- •81.Кількісні показники ступеня ризику в абсолютному вираженні.
- •82.Ризик як міра мінливості результату.
- •83.Семіваріація та семіквадратичне відхилення.
- •84.Кількісні показники ступеня ризику у відносному вираженні.
- •85.Коефіцієнт сподіваних збитків.
- •86.Коефіцієнти асиметрії та варіації асиметрії.
- •87.Коефіцієнт ексцесу та варіації ексцесу.
- •88.Визначення меж зон допустимого, критичного та катастрофічного ризиків.
- •93.“Систематичний ризик” та “специфічний ризик”.
- •94.Основні принципи управління економічним ризиком.
- •95.Зовнішні та внутрішні способи зниження ступеня ризику.
23.Особисті випадки при вирішенні задач лінійного програмування.
У разі застосування симплекс-методу для розв'язування задач лінійного програмування можливі такі випадки.
1. Якщо в оцінковому рядку останньої симплексної таблиці оцінка ∆j =0 відповідає вільній (небазисній) змінній, то це означає, що задача лінійного програмування має альтернативний оптимальний план. Отримати його можна, вибравши розв'язувальний елемент у зазначеному стовпчику таблиці та здійснивши один крок симплекс-методом.
2. Якщо при переході у симплекс-методі від одного опорного плану задачі до іншого в напрямному стовпчику немає додатних елементів аік, тобто неможливо вибрати змінну, яка має бути виведена з базису, то це означає, що цільова функція задачі лінійного програмування є необмеженою й оптимальних планів не існує.
3. Якщо для опорного плану задачі лінійного програмування всі оцінки ∆j ( j=1,n) задовольняють умову оптимальності, але при цьому хоча б одна штучна змінна є базисною і має додатне значення, то це означає, що система обмежень задачі несумісна й оптимальних планів такої задачі не існує.
24.Двоїста задача. Економічний зміст двоїстої задачі й двоїстих оцінок.
Економічну інтерпретацію двоїстої задачі розглянемо на прикладі задачі оптимального використання обмежених ресурсів.
Для виробництва п видів продукції використовується т видів ресурсів, запаси яких обмежені значеннями bi (і= 1, т). Норма витрат кожного ресурсу на одиницю продукції становить аij (j = 1, п; і = 1, т). Ціна одиниці продукції j-го виду дорівнює сj (j= 1, п). Математична модель задачі має такий вигляд:
maxZ =max Σcj xj
Σaj xj ≤ bi (і = 1, т)
xj ≥0 (j = 1, п)
Пряма задача полягає у визначенні такого оптимального плану виробництва продукції X * =(х1*, х2*, ..., х п*), який дає найбільший дохід.
Двоїста задача до поставленої прямої буде така:
F=Σbi yi→min
Σaij yi ≥ сj (j= 1, п)
yі≥0 (і = 1, т)
Економічний зміст двоїстої задачі полягає ось у чому. Визначити таку оптимальну систему двоїстих оцінок ресурсів уi , використовуваних для виробництва продукції, для якої загальна вартість усіх ресурсів буде найменшою. Оскільки змінні двоїстої задачі означають цінність одиниці і-го ресурсу, їх інколи ще надають тіньовою ціною відповідного ресурсу. За допомогою двоїстих оцінок можна визначити статус кожного ресурсу прямої задачі та рентабельність продукції, що виготовляється.
25.Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
Для побудови двоїстої задачі необхідно звести пряму задачу до стандартного виду. Вважають, що задача лінійного програмування подана у стандартному вигляді, якщо для відшукання max значення цільової функції всі нерівності її системи обмежень приведені до виду « ≤», а для задачі на відшукання min значення — до виду «≥ ».
Якщо пряма задача лінійного програмування подана в стандартному вигляді, то двоїста задача утворюється за такими правилами:
1. Кожному обмеженню прямої задачі відповідає змінна двоїстої задачі. Кількість невідомих двоїстої задачі дорівнює кількості обмежень прямої задачі.
2. Кожній змінній прямої задачі відповідає обмеження двоїстої задачі, причому кількість обмежень двоїстої задачі дорівнює кількості невідомих прямої задачі.
3. Якщо цільова функція прямої задачі задається на пошук найбільшого значення (mах), то цільова функція двоїстої задачі — на визначення найменшого значення (min), і навпаки.
4. Коефіцієнтами при змінних у цільовій функції двоїстої задачі є вільні члени системи обмежень прямої задачі.
5. Правими частинами системи обмежень двоїстої задачі є коефіцієнти при змінних в цільовій функції прямої задачі.
6. Матриця
a11 a12 … a1n
A = a21 a22 … a2n
……………..
am1 am2 …amn
що складається з коефіцієнтів при змінних у системі обмежень прямої задачі, і матриця коефіцієнтів в системі обмежень двоїстої задачі
a11 a21 … am1
AТ = a12 a22 … am2
……………..
a1n a2n …amn
утворюються одна з одної транспонуванням, тобто заміною рядків стовпчиками, а стовпчиків — рядками.
Двоїсті пари задач лінійного програмування бувають симетричні та несиметричні.
У симетричних задачах обмеження прямої та двоїстої задач є нерівностями, а змінні обох задач можуть набувати лише невід'ємних значень.
У несиметричних задачах обмеження прямої задачі можуть бути записані як рівняння, а двоїстої — лише як нерівності.
Цьому разі відповідні змінні двоїстої задачі набувають будь-якого значення, не обмеженого знаком.
Пряма задача Двоїста задача
Симетричні задачі
max F = СХ min Z = ВУ
АХ ≤ В АТУ ≥ С
X ≥ 0 Y ≥0
min F = СХ mах Z = ВУ
АХ ≥ B АТУ ≤ С
X ≥ 0 У ≥ 0
Несиметричні задачі
mах F = СХ min Z = ВУ
АХ = В АТУ ≥ C
Х≥О Ує ]-∞;∞[
min F = СХ mах Z = ВУ
АХ = В АТУ ≤ С
Х ≥0 Ує ]-∞;∞[