Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gпосбие по жбк.DOC
Скачиваний:
47
Добавлен:
21.08.2019
Размер:
12.63 Mб
Скачать

Черт. 28. К примеру расчета 17

Расчет производим согласно п. 3.37.

Рабочая высота опорного сечения равна h01 = 600 – 80 = 520 мм (черт. 28, б).

Определим величины f1 и Мb1 по формулам (53) и (52) как для опорного сечения:

мм;

принимаем f1 = 0,5; b2 = 2 (см. табл. 21);

По формуле (55) определим величину qsw:

Н/мм (кН/м).

Определим значение qinc, принимая tg = 1/12:

Н/мм (кН/м).

Поскольку нагрузка сплошная, принимаем q1 = q = 46 кН/м.

Проверим условие (66):

Условие (66) не выполняется, и, следовательно, значение с вычислим по формуле (68):

при этом c0 = с = 0,853 м.

Рабочая высота поперечного сечения h0 на рас­стоянии с = 0,853 м от опоры равна:

м.

Определим величину Mb при h0 = 591 мм:

принимаем f = 0,5;

Проверим условие (50), принимая поперечную силу в конце наклонного сечения равной:

кН;

т. е. прочность наклонных сечений по поперечной силе обеспечена.

Пример 18. Дано: консоль размерами по черт. 29; сосредоточенная сила на консоли F = 300 кН, рас­положенная на расстоянии 0,8 м от опоры; бетон тяжелый класса В15 (Rbt = 0,67 МПа при b2 = 0,9); хомуты двухветвевые диаметром 8 мм (Asw = 101 мм2) из арматуры класса А-I (Rsw = 175 МПа), шагом s = 200 мм.

Требуется проверить прочность наклонных сече­ний по поперечной силе.

Черт. 29. К примеру расчета 18

Расчет. Согласно п. 3.38 проверим из усло­вия (50) наклонное сечение, начинающееся от места приложения сосредоточенной силы, при значении с, определяемом по формуле (68).

Рабочая высота в месте приложения сосредоточенной силы равна мм (см. черт. 29).

По формуле (52) определим величину Mb1, при­нимая b2 = 2 (см. табл. 21) и f = 0:

Н · мм.

Значение qsw равно:

Н/мм (кН/м).

Принимая (см. черт. 29), определим qinc:

Н/мм,

отсюда, принимая q1 = 0, имеем

мм,

при этом c0 = c = 556 мм.

Поскольку значение с не превышает значения расстояния от груза до опоры, оставим с = 556 мм и определим рабочую высоту h0 в конце наклон­ного сечения:

мм.

Поскольку 2h0 = 2 · 510 мм > c0 = 558 мм, оста­вим c0 = 556 мм.

Значение Mb равно:

отсюда

т. е. прочность этого наклонного сечения обеспечена.

Для наклонного сечения, располагаемого от груза до опоры, по формуле (56) определим значение c0, принимая h0 = 650 – 50 = 600 мм:

Н · мм;

принимаем c0 = 2h0 = 1200 мм.

Поскольку c0 = 1200 мм > с = 800 мм, указанное наклонное сечение можно не проверять. Следова­тельно, прочность любого наклонного сечения обеспечена.

Пример 19. Дано: сплошная плита перекрытия без поперечной арматуры размером 3х6 м, толщи­ной h = 160 мм, монолитно связанная по периметру с балками; эквивалентная временная равномерно распределенная нагрузка на плиту v = 50 кН/м2; нагрузка от собственного веса и пола g = 9 кН/м2; a = 20 мм; бетон тяжелый класса В25 (Rbt = 0,95 МПа при b2 = 0,9).

Требуется проверить прочность плиты на дей­ствие поперечной силы.

Расчет. h0 = h а = 160 – 20 = 140 мм. Ра­счет производим для полосы шириной b = 1 м = 1000 мм, пролетом l = 3 м; полная нагрузка на плиту равна q = v + g = 50 + 9 = 59 кН/м.

Поперечная сила на опоре равна:

кН.

Проверим условие (71):

Проверим условие (72). Поскольку боковые края плиты связаны с балками, значение cmax определим с учетом коэффициента  = 1 + 0,05b/h = 1 + 0,05 · 6/0,16 > 1,25 (здесь b = 6 м — расстоя­ние между боковыми краями плиты), т. е.  = 1,25:

мм.

Согласно п. 3.32 имеем:

(см. табл. 21).

Поскольку 356 Н/мм > q1 = 34 Н/мм, принимаем с = cmax = 280 мм = 0,28 м.

Поперечная сила в конце наклонного сечения равна Q = Qmax q1c = 88,5 – 34 · 0,28 = 79 кН.

т. е. прочность плиты по поперечной силе обеспечена.

Пример 20. Дано: панель резервуара консоль­ного типа с переменной толщиной от 262 (в за­делке) до 120 мм (на свободном конце), вылетом 4,25 м; боковое давление грунта, учитывающее нагрузки от транспортных средств на поверхности грунта, линейно убывает от q0 = 69 кН/м2 в задел­ке до q = 7 кН/м2 на свободном конце; а = 22 мм; бетон тяжелый класса В15 (Rbt = 0,82 МПа при b2 = 1,1).

Требуется проверить прочность панели по поперечной силе.

Расчет. Рабочая высота сечения панели в за­делке равна h01 = 262 – 22 = 240 мм.

Определим tg ( угол между растянутой и сжатой гранями):

Расчет производим для полосы панели шириной b = 1 м = 1000 мм.

Проверим условия п. 3.40. Поперечная сила в за­делке равна:

кН.

Проверим условие (71), принимая h0 = h01 = 240 мм:

т. е. условие выполняется.

Поскольку панели связаны одна с другой, а ши­рина стенки резервуара заведомо более 5h, значение cmax определим с учетом коэффициента  = 1,25:

мм.

Средняя интенсивность нагрузки на приопорном участке длиной cmax = 464 мм равна q1 = 69 – (69 – 7) = 65,6 Н/мм.

Из табл. 21 b4 =1,5.

Поскольку

= 464 мм, принимаем с = сmax = 464 мм.

Определим рабочую высоту сечения на расстоянии от опоры (т. е. среднее значение h0 в преде­лах длины с):

мм.

Поперечная сила на расстоянии с == 464 мм от опоры равна:

кН.

Проверим условие (72):

кН,

т. е. прочность панели по поперечной силе обеспе­чена.

Расчет наклонных сечений

на действие изгибающего момента

Пример 21. Дано: свободно опертая железо­бетонная балка пролетом l = 5,5 м с равномерно распределенной нагрузкой q = 29 кН/м; конструкция приопорного участка балки принята по черт. 30; бетон тяжелый класса В15 (Rb = 7,7 МПа; Rbt = 0,67 МПа при b2 = 0,9); продольная арматура без анкеров класса А-III (Rs = 365 МПа), площадью сечения As = 982 мм2 (2  25) и = 226 мм2 (2  12); хомуты из арматуры класса А-I (Rsw = 175 МПа), диаметром 6 мм, шагом s = 150 мм приварены к продольным стержням.

Требуется проверить прочность наклонных сече­ний на действие изгибающего момента.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]