Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Statistical physics (2005)

.pdf
Скачиваний:
35
Добавлен:
01.05.2014
Размер:
1.48 Mб
Скачать
(2 0 + F )

248

Exercises and Problems

(b)Show that the density of states of this branch is given by

0

< 0 : D( ) = 2D0( )

+ 0

 

 

 

 

> 0 : D( ) = D0( ) Å1 +

 

ã

 

0

(7)

+ 0

II.4. In the rest of the problem, the temperature is taken as zero.

(a)Qualitatively explain how the Fermi energy changes with the electrons number N . Show that if N is small enough, only the branch Eis filled.

(b)What is the value of the Fermi energy F when the E+ branch begins to be filled? Calculate the number of electrons N at this point, versus

Lx, Ly, m, and 0.

(c) Where are the wave vectors k corresponding to the filled states F < 0 located ?

II.5. Assume in what follows that F > 0.

(a) What are the wave vectors k for the occupied states in either branch

E± ?

(b) Calculate the Fermi wave vectors kF+ and kFversus F , k0, 0, m and .

(c) For N > N , calculate N − N and deduce the relation :

N = LxLy m π 2

II.6. A weak magnetic field is now applied on the sample.

(a)Using the result of I.5, explain why the Fermi energy does not vary to first order in B.

(b)Calculate the magnetization along z of the electrons gas, to first order in B.

II.7. Now one analyzes the possibility to maintain a magnetization in the system for some time in the absence of magnetic field. At time t = 0, each electron is prepared in the spin state |+ z . The magnetization along z is thus M (0) = N /2. For a given electron, the evolution of sz (t) in the absence of collisions was calculated in I.4. Now this evolution is modified due to the e ect of collisions. Because of the elastic collisions of an electron on the material

defects, its k wavevector direction may be randomly modified. These collisions are modeled assuming that :

– they occur at regular times : t1 = τ , t2 = 2τ ,..., tn = ,...

– the angle φn characterizing the k direction between the nth and the (n + 1)th collision is uniformly distributed over the range [0, 2π[ and decorrelated from the previous angles φn−1, φn−2, ..., and thus from the coe cients a±(tn).

– the angles φn corresponding to di erent particles are not correlated.

Problem 2002 : Physical Foundations of Spintronics

249

Under these assumptions, the total magnetization after many collisions can be calculated by making an average over angles for each electron. One writes s¯(t) for the average of sz (t) over the angles φn.

Show that s¯(tn+1) = cos(2ωτ ) s¯(tn).

II.8. One assumes that ωτ 1.

(a)Is there a large modification of the averagespin s¯ between two collisions?

(b)One considers large times t with respect to the interval τ between two collisions. Show that the average spin s¯(t) exponentially decreases and express the characteristic decrease time td versus ω and τ .

(c)Take two materials : the first one is a good conductor (a few collisions take place per unit time), the second one is a poor conductor (many collisions occur per unit time). In which of these materials is the average spin better “protected,” i.e., has a slower decrease? Comment on the result.

(d)For τ = 1012 sec and ω=5 µeV, estimate the spin relaxation time td.

II.9. To maintain a stationary magnetization in the population of N spins, one injects g± electrons per unit time, of respective spins sz = ± /2 into the system. For each spin value, the electrons leave the system with a probability per unit time equal to 1/tr. Besides, one admits that the relaxation mechanism studied in the previous question is equivalent to the exchange between the + and spin populations : a + spin is transformed into a spin with a probability per unit time equal to 1/td, and conversely a spin is transformed into a + spin with a probability per unit time equal to 1/td. One calls f±(t) the populations of each of the spin states at time t, td is the spin relaxation time.

(a)Write the rate equations on df±/dt. What are the spin populations f± in steady state?

f+ − f

(b) Deduce the relative spin population, that is, the quantity P = f+ + f. In what type of material will the magnetization degrade not too fast?

Solution of the Exercises

and Problems

Electrostatic Screening : exercise 2000

Magnetic Susceptibility of a “Quasi-1D” Conductor : exercise 2001 Entropies of the HC Molecule : exercise 2002

Quantum Boxes and Optoelectronics : problem 2001 Physical Fundations of Spintronics : problem 2002

251

Exercise 2000 : Electrostatic Screening

253

Exercise 2000 : Electrostatic Screening

I.1. The density N/Ω and the chemical potential µ are related by

N

=

1

 

D(k)fF D (k)d3k =

1

0

+

 

4πk2dk

4π3

 

exp β

Å

2k2

− µã + 1

 

 

 

 

 

 

 

 

2me

I.2. In the high temperature and low density limit, the exponential in the denominator of the Fermi-Dirac distribution is large with respect to 1, so that

N

 

1

 

 

+

β

2k2

µ

 

0

2me

4π3

e

Å

 

ã4πk2dk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2eβµ Å

 

h2

 

ã

3/2

 

 

 

 

 

 

 

 

 

N

 

 

 

2πmekB T

 

 

 

I.3. The total energy in presence of a potential is written

ε= 2k2 + V (r) 2me

At high temperature and low density

 

1

 

 

 

 

 

+

 

 

β

Å

2k2

µ

ã

N

 

 

 

 

0

 

 

2me

4π3 Ω e−βV (r)d3r

4πk2dk e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.4. By definition one has

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N = n(r)d3r

 

 

 

 

 

 

 

one thus identifies n(r) to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n(r) = n0 e−βV (r)

 

 

 

 

 

 

 

with

 

 

 

 

 

 

 

 

2k2

 

 

 

 

 

 

1

+

 

 

 

β

 

µ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n0 =

 

0

4πk2dk e

Å

2me

ã

 

 

 

4π3

 

 

I.5. If βV (r) 1 for any r, n is uniform, i.e.,

N n = n0 =

254

Solution of the Exercises and Problems

II.1. The potential energy of an electron inside the electrostatic potential Φtot(r) is −e Φtot(r), the energy of a hole +e Φtot(r). The electron and hole densities are respectively equal to

n(r) = n0 exp[−β(−e Φtot(r)]

p(r) = p0 exp[−β(+e Φtot(r)]

N with n0 = p0 = .

II.2. The total density of charges at r is equal to e[p(r) − n(r)]. The charge localized at the origin also enters into the Poisson equation :

∆Φtot(r) +

e[p(r) − n(r)]

+

(r)

= 0

 

 

 

ε0εr

ε0εr

In the high temperature limit and to the lowest order

p(r) − n(r) = n0 eβeΦtot(r) − eβeΦtot(r)

2n0 Φtot(r)

Whence the equation satisfied by Φtot(r) :

 

∆Φtot(r) =

2n0 e2β

Φtot(r)

Q

δ(r)

 

ε0εr

ε0εr

One writes λ2 =

ε0εrkB T

, this is the square of a length.

N

 

2e2

II.3. If N= 1022 m3 T = 300 K, εr = 12.4, then λ = 30 nm.

II.4. The e ect of the charge located at the origin cannot be felt beyond a distance of the order of λ : at a larger distance Φtot(r) is rapidly constant, the electron and hole densities are constant andopposite. The mobile electrons and holes have screened the charge at the origin.

Exercise 2001 : Magnetic Susceptibility of a “Quasi-1D” Conductor

255

Exercise 2001 : Magnetic Susceptibility of a

“Quasi-One-Dimensional” Conductor

I.1.

a) λ = 0 kB T γB

ε

| + 1 >

|0 > ε0 B

0

| − 1 >

Three levels in ε0 for B = 0 Comparable occupations

of the three levels

c) kB T λ γB

ε

| + 1 >

ε0 + λ

 

 

| − 1 >

ε0

 

|0 >

 

 

B

0

 

b) λ kB T γB

ε

| + 1 >

ε0 + λ

 

| − 1 >

 

|0 >

ε0

B

0

At the temperature T , the upper levels are weakly occupied

d) γB λ kB T

ε

| + 1 >

ε0 + λ

ε0

 

|0 >

 

 

B

0

 

 

 

| − 1 >

Comparable occupations of the three states at T .

Only level | − 1 is populated.

Little influence of λ, this case

The magnetization is saturated, each

is almost equivalent to a)

ion carries a moment +γ

256

Solution of the Exercises and Problems

I.2. State |0 , energy

ε0

|+

ε0 + λ + γB

|−

ε0 + λ − γB

For a single ion :

 

z= eβε0 + eβ(ε0+λ+γB) + eβ(ε0+λγB)

= eβε0 [1 + eβ(λ+γB) + eβ(λγB)]

For the whole system : Z = (z)N

F = −kB T ln Z

= −N kB T −βε0 + ln 1 + e−β(λ+γB) + e−β(λ−γB)

ó©

= N ε

 

 

k T ln 1 + e

β(λ+γB) + e

β(λ γB)

 

 

 

0 − NB

 

 

 

î

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e−βλ+βγB

e

βλ βγB

 

ó

 

M =

 

∂F

= N γ

 

î

 

 

 

 

 

 

− −

 

 

 

 

 

 

∂B

1 + e−β(λ+γB)

+ e−β(λ−

 

 

 

 

 

 

 

 

 

γB)

 

 

 

 

 

 

 

 

 

 

 

 

For B → 0, M

N γ2βγBe−βλ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i.e.,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + 2e−βλ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ =

 

2N γ2βe−βλ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ω(1 + 2e−βλ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.3. Discussion of the limit cases :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) λ = 0

 

 

 

 

 

 

 

 

ex − e−x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M = N γ

 

 

 

with x = βγB

 

 

 

 

 

1 + ex + e−x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the limit x → 0, one obtains χ =

2N γ2

 

 

 

 

 

 

 

 

 

 

 

 

(Curie law).

 

3ΩkB T

 

(b) βλ 1 βγB = x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M N γe−βλ(ex − e−x)

 

 

 

 

 

 

 

 

χ

 

2N γ2e−βλ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kB T

 

 

 

 

 

 

 

 

 

 

 

 

 

(Curie law attenuated by the thermal activation towards the magnetic

level).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 1 βλ x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

N γ[x − βλ + βλ + x]

=

2N γ2βB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ =

 

2N γ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3ΩkB T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This situation is analogous to a).

Exercise 2001 : Magnetic Susceptibility of a “Quasi-1D” Conductor

257

(d) βγB βλ 1

M N γ

The magnetization is saturated.

I.4. The high temperature behavior of χ in the figure suggests a Curie law.

The expression of χ obtained in I.2. vanishes for β → ∞ and for β → 0. It is positive and goes through a maximum for β of the order of λ1 (exactly for 1 −βλ+ 2e−βλ = 0, i.e., βλ = 1.47). From the temperature of the χ maximum λ can be deduced.

Note : in fact, for the system studied in the present experiment, the ε0 + λ level contains 3 states, and not 2 like in this exercise based on a simplified model.

II.

+S

 

2S

 

1 − e(2S+1)βγB

 

z =

e−lβγB = eβSγB e−lβγB = eβSγB

 

−S

 

l=0

1 − e−x

1 − e−βγB

f = −kB T ln z = −kB T

ñSβγB + ln

ô with x = βγB

 

 

1

e(2S+1)x

 

 

m =

∂f

=

∂f

γβ = γS + kB T

(2S + 1)γβe(2S+1)x

∂B

∂x

1 − e(2S+1)x

 

 

 

 

 

m

= S +

2S + 1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

e(2S+1)x 1

ex 1

kB T βγe−x

1 − e−x

3 limits : x → +∞ x → −∞ x → 0

(a) x → +(high positive field, low temperature)

m

→ S saturation

γ

(b) x → −∞ (high negative field, low temperature)

m

→ S − (2S + 1) + 1 = −S saturation

γ

(c) x → 0 : (low field, high temperature).

One expects m to be proportional to B, which allows to define a susceptibility. Therefore one has to develop m up to the term in x, which requires to express

258

 

 

 

 

 

 

 

 

 

Solution of the Exercises and Problems

the denominators to third order.

 

 

 

 

 

 

 

 

 

 

 

m

S +

 

 

 

2S + 1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

(2S + 1)x + (2S + 1)2

x2

+ (2S + 1)3

x3

+ ...

x +

x2

+

x3

+ . . .

 

2

6

2

6

 

m

x

S(S + 1)

=

γBS(S + 1)

(Curie law)

 

 

 

 

 

 

 

γ

3

3kB T

Exercise 2002 : Entropies of the HC Molecule

1.

 

 

 

 

ï

 

 

 

 

 

 

 

 

 

ò

2

 

 

S3D = N kB ln

 

 

(2πmkB T )3/2

+

5

N kB

 

N h3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ3D = −kB T ln ï

 

 

(2πmkB T )3/2

ò

 

 

2.

N h3

 

 

 

 

2D

 

N !

Å h2

2

 

A B

N

 

 

 

 

 

 

 

 

ã

 

 

 

 

 

Z

 

=

1

 

A

 

 

πmk T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ò

 

 

 

 

 

 

 

 

 

 

ïN A

 

 

 

 

 

S2D

= N kB ln

 

 

 

h2

(2πmkB T )

+ 2N kB

 

µ2D

= −kB T ln

ï

 

(2πmkB T )ò

 

 

 

 

N h2

 

 

 

A molecule is spontaneously adsorbed if µ2D < µ3D.

3.

If the adsorbed film is mobile on the surface :

 

 

 

 

 

S = S2D − S3D

ò

2 N kB

 

S = N kB ln ï Ω(2πmkB T )1/2

 

 

Ah

 

 

1

 

4.

For the only translation degrees of HC :

 

 

 

 

 

S3D

= 152.9 J.K1

 

 

 

 

 

S2D

= 48.2 J.K1

 

 

 

 

The average 3D distance is of 3.3nm, it is 0.11nm between molecules on the surface (which is less than an interatomic distance, but one has also to account for the large corrugation of the surface).

Problem 2001 : Quantum Boxes and Optoelectronics

259

5.

1

 

 

 

ZN =

 

(zrot)N (ztr)N

 

N !

 

 

 

 

6.

 

 

 

 

 

z1rot =

 

 

 

 

h

exp

Ç2IA å

 

 

 

 

 

 

 

 

 

 

 

 

 

dφdpφ

 

 

 

βpφ2

 

 

 

 

 

 

 

 

 

 

2π

 

 

 

+

 

 

 

 

βpφ2

å

 

 

 

 

 

 

=

 

 

−∞ dpφ exp Ç

 

 

 

 

 

 

 

 

 

h

2IA

φ

 

 

 

 

 

=

 

2π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πIAkB T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.

 

h2

 

 

h

 

 

 

 

 

z2rot =

 

exp 2Iθ

 

 

exp Ç2I sin2 θ å

 

 

 

 

 

dθdpθ dφdpφ

Å

 

βp2

ã

 

 

βpφ2

 

 

=

 

8π2

IkB T

 

 

 

 

 

 

 

 

 

 

 

 

h2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kB T

4π2

 

 

 

 

 

 

 

 

 

 

 

The expression in the course is

 

 

=

 

 

IkB T , for a symmetrical mo-

 

 

h2

 

 

 

 

 

2hcB

 

 

 

 

 

 

 

 

 

 

 

lecule, such that its physical situation is identical after a 180˚rotation. But HC is not symmetrical

8. Rotation entropy of HC :

Frot = −N kB T ln z2rot

(the factor for indistinguishability is included inside the translation term).

Srot = ∂T

=

1

B ïln z2rot

+ T ∂T

ò

 

∂Frot

 

N k

 

 

ln z2rot

 

 

 

 

 

 

 

 

Srot = 33.3 J · K

Problem 2001 : Quantum Boxes

and Optoelectronics

I.1. Owing to the spin degeneracies one has

2

2

nEc =

 

and nEv =

 

eβ(Ecµ) + 1

eβ(Ev µ) + 1