Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по курсу ТСП.doc
Скачиваний:
18
Добавлен:
04.08.2019
Размер:
6.69 Mб
Скачать

10. Интеграл Лебега. Свойства математического ожидания.

Пусть ( ,F,P) - конечное вероятностное пространство, т.е. существует набор множеств таких, что при и , а - простая случайная величина.

Определение. Математическим ожиданием простой случайной величины , обозначаемым через М , называется величина M P(Ak). Это определение корректно, так как оно не зависит от способа представления случайной величины . Для математического ожидания будем использовать следующее обозначение: P P.

Определение. Интеграл Лебега относительно вероятностной меры Р случайной величины , обозначаемый М , определяемый равенством M M называется математическим ожиданием случайной величины .

Это определение будет корректным, если значение предела не зависит от способа выбора аппроксимирующей последовательности (иначе говоря, если и , то M = M ).

Пусть теперь - произвольная случайная величина. Обозначим .

Определение. Говорят, что математическое ожидание случайной величины существует, если хотя бы одна из величин или конечна, т.е. . В этом случае по определению полагается , а - называется интеграл Лебега от по мере Р.

Определение. Говорят, что математическое ожидание случайной величины конечно, если и . Отсюда следует, что - конечно тогда и только тогда, когда .

Наряду с можно рассматривать и , если они определены, то их называют моментами - порядка, где r = 1,2,…,k.

Свойства математического ожидания.

А) Пусть и у случайной величины существует , тогда существует и .

Доказательство. Для простых функций это утверждение очевидно. Пусть , где - простые случайные величины и , следовательно . Значит .

В) Пусть , тогда .

С) Если существует , то .

Доказательство. Так как , то из А) и В) следует, что , то есть .

D) Если существует , то для каждого A F существует . Если конечно, то - конечно.

Доказательство следует из пункта В), так как , .

Е) Если и - случайные величины, причем и , то .

Доказательство. Пусть и - последовательность простых функций таких, что и . Тогда и . Кроме того и . Значит .

F) Если , то .

G) Если , Р-п.н. и , то и .

Доказательство. Пусть , тогда , где . В силу Е) .

Н) Пусть и , тогда Р - п.н.

Доказательство. Обозначим . Очевидно, что . поэтому в силу свойства В) , следовательно , значит для всех , но .

I) Пусть и - случайные величины такие, что и и для всех . Тогда Р - п.н..

Доказательство. Пусть . Тогда . Поэтому , тогда по свойству Е) , а в силу Н) P - п.н., значит Р(В)=0.

J) Пусть - расширенная случайная величина и , тогда P - п.н..

Доказательство. Действительно, пусть и Р(А) > 0. Тогда , что противоречит предположению .

11. Сходимость по вероятности и с вероятностью один случайных величин. Теорема о монотонной сходимости (теорема 15).

Пусть на задано последовательность случайных величин.

Определение. Последовательность случайных величин называется сходящейся по вероятности к случайной величине , обозначается или , если для при .

Теорема 13. Последовательность случайных величин сходится по вероятности к случайной величине тогда и только тогда, когда при .

Определение. Последовательность случайных величин называется сходящейся с вероятностью 1 к случайной величине , если , обозначается .

Лемма 14. (Бореля-Кантелли) Пусть последовательность событий и . Если , то Р(А) = 0.

Доказательство. В силу свойства вероятности имеем

Р(А) = .

Доказательство закончено.

Теорема 15 (О монотонной сходимости) Пусть

случайные величины. Тогда справедливы следующие утверждения:

а) если ;

б) если .

Доказательство. а) Предположим, что . Пусть для каждого - последовательность простых случайных величин таких, что при . Обозначим . Тогда очевидно, что . Пусть , поскольку для , то переходя к пределу при получим, что для любого , значит . Так как случайные величины простые и , то .

С другой стороны, очевидно, что . Поэтому , значит = .

Пусть теперь - случайная величина с . Если , то в силу свойства В) математических ожиданий = , утверждение доказано.

Пусть , тогда вместе с условием получаем: . Очевидно, что для всех . Поэтому, согласно доказанному и значит по свойству Е) математических ожиданий . Так как , то при .

Доказательство пункта б) следует из а), если вместо исходных случайных величин рассмотреть случайные величины со знаком минус.