Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по курсу ТСП.doc
Скачиваний:
18
Добавлен:
04.08.2019
Размер:
6.69 Mб
Скачать

51. Процессы ограниченной вариации и их свойства (теоремы 94, 95).

Пусть - стохастический базис.

Определение. Согласованный случайный процесс со значениями в называется возрастающим, если почти все его траектории непрерывны справа и не убывают. Множество возрастающих процессов обозначим через .

Из определения возрастающего процесса следует, что:

а) возрастающий процесс имеет левый предел,

б) существует случайная величина Р - п. н.

Определение. Будем говорить, что согласованный процесс имеет ограни­ченную вариацию на отрезке [0,T], обозначаемую через Var , если для любого разбиения отрезка [0,T] Р - п. н. конечна величина Var , где П - множество разбиений отрезка [0,T].

Определение. Через W обозначим множество непрерывных справа, имеющих левый предел случайных процессов таких, что почти каждая его траектория имеет ограниченную вариацию на любом компактном множестве из .

Теорема 94. Согласованный случайный процесс тогда и только тогда, когда для , где . (Докажите самостоятельно).

Теорема 95. Пусть - возрастающий процесс. Тогда существует един­ственное разложение вида ,где - непрерывный возрастающий процесс (т. е. предсказуемый), а - опциональный случайный процесс. Если - предсказуемый процесс, то - предсказуемый процесс.

Доказательство. Разложение - следует из теоремы Лебега. Из доказа­тельства теоремы 92 следует, что существует последовательность марковских моментов , которая исчерпывает скачки процесса . Обозначим , , где . Ясно, что при каждом п процесс - возрастающий. Значит - возрастающий и непрерывен справа. Если ,то - непрерывный возрастающий процесс. Поскольку - непрерывен справа и согласован, то в силу теоремы 86 он опционален. Доказательство закончено.

Замечание. Обозначим через - множество интегрируемых возрастающих процессов, т. е. , если . Через обозначим множество интегрируемых возрастающих процессов, т. е. , если MVar .

52. Точечный случайный процесс (определение). Считающий процесс и его свойства. Компенсатор. Пример точечного процесса.

Определение. Пусть на стохастическом базисе задана последова­тельность марковских моментов , которую мы будем называть точечным процессом, если выполняются условия: а) ,

б) Р - п. н. для , в) существует Р - п. н.

Точечный процесс часто называют моновариантным процессом, процессом накопле­ния или считающим процессом. Это связано со следующим обстоятельством.

Определим процесс следующим образом: , где - последовательность марковских моментов, фигурирующая в определении то­чечного процесса, и назовем его считающим процессом. Ясно, что процесс согласо­ван с фильтрацией , имеет кусочно-постоянные траектории, которые непрерывны справа и имеют левый предел. Поэтому в силу теоремы 19 он опционален и имеет конечное число скачков ( ) нa конечном интервале. Из определения счита­ющего процесса следует, что для и при , поэтому он имеет:

а) ограниченную вариацию, б) является субмартингалом так как . Из сказанного выше следует, что между точечным и считающим процессом существует взаимно однозначное соответствие, так как - опциональные марковские моменты обладают следующими свойствами: а) , б) Р - п. н. для ,

в) существует Р - п. н. Так как - субмартингал, то в силу теоремы Дуба - Мейера справедливо единственное разложение

Р - п. н. для , где - предсказуемый возрастающий процесс, а - мартингал, относительно меры Р.

Определение. Предсказуемый возрастающий процесс назовём - компенсатором считающего случайного процесса , если - мартингал относительно потока и меры Р.

Пример. Пусть - пуассоновский процесс с интенсивностью . Тогда его компенсатором является процесс .