Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опір матеріалів. Лекції 7-15.docx
Скачиваний:
16
Добавлен:
30.04.2019
Размер:
9.45 Mб
Скачать
    1. Типи циклів напружень. Границя витривалості і криві витривалості

Змінність напруження в часі можна зобразити кривими в координатах час-напруження (рис. 15.1). Час T, протягом якого напруження повторює своє найбільше або найменше значення, є періодом (рис. 15.1, а). Послідовність зна­чень напруження за один період називається циклом напруження.

Найбільше (в алгебраїчному смислі) нормальне напруження циклу називається максимальним і позначається σmax ( або τmax – якщо розглядається зміна дотичного напруження), а найменше — мінімальним σmin (або τmin).

Алгебраїчна півсума максимального і мінімального напруження циклу на­зивається його середнім напруженням

(15.1)

Алгебраїчна піврізниця і називається амплітудою циклу і

(15.2)

Легко помітити, що ці величини пов'язані між собою рівностями

(15.3)

Для характеристики циклу користуються коефіцієнтом асиметрії r

(15.4)

Цикл напружень називається симетричним, якщо . У цьому випадку коефіцієнт асиметрії r = -1. Цикли, для яких r ≠ -1 називаються аси­метричними. Окремим видом асиметричного циклу є віднульовий (пульсаційний цикл), для якого 0 (або = 0). Для віднульового циклу напру­ження не змінює свого напрямку. Коефіцієнт асиметрії такого циклу r = 0.

На рис. 15.1 графічно показані деякі випадки циклічної зміни напружень. Крива а зображає симетричний цикл, крива δ — довільний асиметричний цикл, крива b — віднульовий цикл.

Опір матеріалів повторно-змінним напруженням досліджується шліхом випробувань на спеціальних випробувальних машинах.

Найбільш поширені випробування на згин з симетричним циклом. Зразок закріплюється в патроні шпінделя машини і обертається з великим числом обертів (3000-6000 об/хв). Кожен оберт відповідає одному циклові напруження. Виготовляється кілька однакових стандартних зразків круглого перерізу з полі­рованою поверхнею і діаметром 8-10 мм.

Перший зразок навантажується досить великим напруженням σ1, що приводить до руйнування при невеликій кількості циклів N1. Для другого зразка навантаження знижується, тому його руйнування настає при σ2 < σ1 але після більшого числа циклів N2, Поступове зниження напружень проводиться і для наступних зразків. Значення циклів і відповідних руйнівних напружень зобра­жені на рис. 15.2 точками з координатами N, σтах. З'єднавши одержані точки плавною кривою, одержуємо криву витривалості (криву Велера) для симетрич­них циклів (r = -1). Аналогічно можна одержати криві витривалості і для аси­метричних циклів.

Крива витривалості для маловуглецевої і середньовуглецевої сталі має го­ризонтальну асимптоту (рис. 15.2). Найбільше циклічне напруження σr (індекс r — коефіцієнт асиметрії циклу), при дії якого зразок не руйнується після дуже великого числа циклів є границею витривалості для цього типу циклів. Для незагартованої сталі досить визначити таке неруйнівне навантаження при числі циклів N0 = 107 , тоді при цьому напруженні не буде руйнування й при довіль­ному числі циклів N >N0. Число називається базою визначення границі витривалості.

Слід зауважити, що границі витривалості залежать від коефіцієнта асиметрії циклів. Найнижчі границі витривалості одержуються для симетричних цик­лів, причому границя витривалості при згині σ-1 вища від границі витривалості σ-1р при розтягу-стиску і від границі витривалості τ-1k при крученні.

Експериментальні дані для сталі дають такий зв'язок між цими величина­ми:

. (15.5)