Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VM.docx
Скачиваний:
16
Добавлен:
24.04.2019
Размер:
1.79 Mб
Скачать

Задача о касательной

Пусть на плоскости дана непрерывная функция и необходимо найти уравнение касательной к этой кривой в точке .

Уравнение прямой по точке , принадлежащей этой прямой, и угловому коэффициенту имеет вид:

,

где , ( - угол наклона прямой).

Из (рис.5.1) найдем тангенс угла наклона секущей : .

Если точку приближать к точке , то угол будет стремиться к углу , т.е.

при .

Следовательно, .

Из задачи о касательной следует геометрический смысл производной: производная f(x0) есть угловой коэффициент (тангенс угла наклона) касательной, проведенной к кривой у=f(x) в точке х0, т.е. k= f(x0).

Следовательно, уравнение касательной к кривой y=f(x) в точке х0 примет вид

  1. Правила дифференцирования

Производная функции м.б. найдена по схеме:

  1. Дадим аргументу приращение и найдем наращение значений функции .

  2. Находим приращение функции .

  3. Составляем отношение .

  4. Находим предел этого отношения при , т.е. (если этот предел существует).

Основные правила дифференцирования

  1. Производная постоянной равна нулю, т.е. .

Д о к а з а т е л ь с т в о.

При любых и имеем и . Отсюда при любом отношение и, следовательно,

  1. Производная аргумента равна единице, т.е. .

Д о к а з а т е л ь с т в о.

Рассмотрим функцию . При любых и имеем и . Отсюда при любом отношение и, следовательно,

  1. Производная алгебраической суммы конечного числа дифференцируемых функций равна алгебраической сумме производных этих функций, т.Е.

.

4. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, т.е.

.

Д о к а з а т е л ь с т в о.

Пусть и - дифференцируемые функции. Найдем производную функции по схеме:

  1. Дадим аргументу приращение . Тогда функции и получат наращенные значения и , а функция - значение .

  2. Найдем приращение функции: .

  3. Составим отношение , которое представим в виде: .

  4. Найдем предел этого отношения при , используя теоремы о пределах:

На основании определения производной получили, что:

или . ■

Следствие 1. Постоянный множитель можно выносить за знак производной:

.

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные, например:

.

5. Производная частного двух дифференцируемых функций может быть найдена по формуле

(при условии, что ).

Д о к а з а т е л ь с т в о.

1) Дадим аргументу х приращение . Тогда функции и получат наращенные значения и , а функция - значение .

2) Найдем приращение функции:

3) Составим отношение , которое представим в виде:

4) Найдем предел этого отношения при , используя теоремы о пределах:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]