Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика1-70.docx
Скачиваний:
7
Добавлен:
18.04.2019
Размер:
463.72 Кб
Скачать

24. Уравнение Берноули

Учитывая уравнение неразрывности, можно сделать вывод: при стационарном течении жидкости давление меньше в тех местах, где больше скорость течения, и, наоборот, больше в тех местах, где скорость течения меньше.

К этому выводу впервые пришел Д. Бернулли, поэтому данный закон называют законом Бернулли.

Применение закона сохранения энергии к потоку движущейся жидкости позволяет получить уравнение, выражающее закон Бернулли (приводим без вывода):

 — уравнение Бернулли для горизонтальной трубки.

Здесь p1 и p2 — статические давления, ρ — плотность жидкости. Статическое давление равно отношению силы давления одной части жидкости на другую к площади соприкосновения, когда скорость их относительного движения равна нулю. Такое давление измерил бы манометр, движущийся вместе с потоком. Неподвижная монометрическая трубка с отверстием, обращенным навстречу потоку, измерит давление  .

Слагаемые   и   имеют, с одной стороны, размерность давления, с другой — размерность объемной плотности энергии, т. е. энергии, приходящейся на единицу объема. Действительно,  , масса жидкости m = ρV. Если V = 1 м3, то  . Поэтому   — называют динамическим давлением. Это кинетическая энергия потока в единичном объеме жидкости (объемная плотность энергии).

Если трубка не горизонтальная, то надо учитывать и гидростатическое давление жидкости. Уравнение Бернулли будет иметь вид:

где h1 и h2 — высоты, на которых находятся сечения S1 и S2.

Закон Бернулли лежит в основе принципа действия многих технических устройств и приборов: водоструйного насоса, пульверизатора, форсунки карбюратора. Закон Бернулли позволяет объяснить возникновение подъемной силы крыла самолета.

25. Вязкость жидкостей

Вязкость - свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между ее молекулами. Характеристиками вязкости являются: динамический коэффициент вязкости μ и кинематический коэффициент вязкости ν.

Единицей динамического коэффициента вязкости в системе СГС является пуаз (П): 1 П=1 дина·с/см2=1 г/(см·с). Сотая доля пуаза носит название сантипуаз  (сП): 1  сП=0,01П. В системе МКГСС единицей динамического коэффициента вязкости является кгс·с/м2; в системе СИ - Па·с. Связь между единицами следующая: 1 П=0,010193 кгс·с/м2=0,1 Па·с; 1 кгс·с/м2=98,1 П=9,81 Па·с.

Кинематический коэффициент вязкости

ν=μ/ρ,

Единицей кинематического коэффициента вязкости в системе СГС является стокc (Ст), или 1 см2/с, а также сантистокс (сСт): 1 сСт=0,01 Ст. В системах МКГСС и СИ единицей кинематического коэффициента вязкости является м2/с:  1 м2/с=104Ст.

Вязкость жидкости с повышением температуры уменьшается. Влияние температуры на динамический коэффициент вязкости жидкостей оценивается формулой μ = μ0·e­a(t-t0), где μ = μ0 - значения динамического коэффициента вязкости соответственно при температуре t и t0 градусов; а - показатель степени, зависящий от рода жидкости; для масел, например, значения его изменяются в пределах 0,025—0,035.

Для смазочных масел и жидкостей, применяемых в машинах и гидросистемах, предложена формула, связывающая кинематический коэффициент вязкости и температуру:

νt=ν50·(50/t0)n,

где νt - кинематический коэффициент вязкости при температуре t0; ν50 - кинематический коэффициент вязкости при температуре 50 0С;  t - температура, при которой требуется определить вязкость, 0С;  n - показатель степени, изменяющийся в пределах от 1,3 до 3,5 и более в зависимости от значенияν50.

С достаточной точностью n может определяться выражением n=lgν50+2,7.