Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpora_teoria_veroyatnostey_vsya.doc
Скачиваний:
3
Добавлен:
19.12.2018
Размер:
564.74 Кб
Скачать

2.20. Навести основні властивості кореляційного моменту μxy та коефіцієнту кореляції rxy

Корреляционный момент млужит для х-ки связи между величинами X и Y. КМ равен нулю, если X и Y независимы; следовательно, если КМ не равен нулю, то X и Y – зависимые случайные величины.

Величина коэф. корреляции не зависит от выбора единицы измерения случайных величин. В этом состоит преимущество коэф. корреляции перед корреляционным моментом. КК независимых сл. величин равен нулю (так как μxy = 0).

Абсолютная величина кор. момента двух случайных величин X, Y не превышает среднего геометрического их дисперсий:

Абсолютная величина коэф. кореляции не превышает единицы.

Властивості кор.моменту μ xy:

1) Кор.момент 2 незалежних в.в. Х та Y=0;І навпаки, якщо кор.момент не равен 0, то Х та Y – залежні в.в.

2) Абсолютна величина кор.моменту 2 в.в. Х та Y не перевищує середнього геометричного їх дисперсій: ||<=

Властивості коефіцієнта кореляції:

1) | rxy| <=1; 2) Якщо Х та Y незалежні, то rxy=0; 3) Якщо між Х та Y є лінійна залежність Y=a*X+b, де a та b – сталі, то | rxy|=1

Корельованими наз.2 в.в., якщо їх μ xy відрізняється від 0.

Некорельваними наз. 2 в.в., якщо їх μ xy=0

2.21. Дати означення корельованості (некорельованості) двох в.В. Пояснити різнцю і зв’язок між корельованістю (некорельованістю) і залежністю двох в.В.

Две случайные величины X и Y называют коррелированными, если их корреляционный момент (или, что то же, коэффициент корреляцыии) отличен от нуля; X и Y называют некоррелированными величинами, если их корреляционный момент равен нулю. Две коррелированные величины также и зависимы. Действительно, допустив противное, мы должны заключить, что μxy = 0, а это противоречит условию, так как для коррелированных величин μxy не равняется 0. Обратное предположение не всегда имеет место, т.е. если две величины зависимы, то они могут быть как коррелированными, так и некоррелированными. Другими словами, корреляционный момент двух зависимых величин может быть не равен нулю, но может и равнятся нулю. Для нормально распределенных составляющих двумерной случайной величины понятия независимости и некоррелированности равносильны.

Зв’язок між корел-тю(некорел-тю) та залежністю:

якщо Х, Y некорельовані μ xy=0, то залежність невідома.

якщо Х, Y корельовані , то вони залежні

якщо X, Y незалежні , то вони некорельовані X, Y =0

якщо X, Y залежні, то вони можуть бути як корельованими так і некорельованими

μ xy – індикатор залежності і незалежності X, Y

Різниця: із незалежності 2 величин слідує їх некорельованість , але із некорельваності неможна зробити висновок о незалежності цих величин

2.22. Вивести рівняння лінійної середньоквадратичної регресії y на х(х на y). Пояснити зміст позначень.Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.

Лінійна середньоквадратична регресія Y на Х має вигляд

g(X)=my+ (X – mx), де mx=М(Х), my=М(Y), σx=, σy=, r=μxy/( σxσy) – коефіцієнт кореляції величин Х та Y.

Виведення:

Введем у розгляд функцію двох незалежних аргументів та :

F(,)=M[Y - - X]2 . (*)

Враховуючи, що М(Х – mx)=M(Y – my)=0,

M[(X - mx)*(Y - my)]= μxy=r σxσy та виконав викладки, отримаємо

F(,)=+ - 2r σxσy+( my - - mx)2

Дослідим функцію F(,) на екстремум, для чого прирівняєм 0 часткові похідні :

, σxσy=0

Звідси , mx

Легко впевнитися , що при цих значеннях та розглянута функція приймає найменше значення. Звідси лінійна середньоквадратична регресія Y та X має вигляд

g (X)=X= - mx+X, або g(X)=my+ (X – mx),

Коефіцієнт = наз. коефіцієнтом регресії Y на X

Підставимо знайдені значення та у співвідношення (*), отримаємо мінімальне значення значення функції F(,) , яке дорівнює (1 – r2). Величину (1 – r2) наз. залишковою дисперсією в.в. Y відносно в.в. Х..Вона характеризує величину похибки , яку допускають при заміні Y лінійної функції g(X)=X. При r=+ -1 залишкова дисперсія =0

Аналогічно можно отримати пряму середньоквадратичної регресії Х на Y

X - mx=r(Y- my), де r- коефіцієнт регресії Х на Y.Залишкова дисперсія (1-r2) величини Х відносно Y.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]