Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ОТЦ Часть 1.doc
Скачиваний:
95
Добавлен:
09.12.2018
Размер:
3.4 Mб
Скачать

5. Комплексные передаточные функции (комплексные частотные характеристики)

Будем рассматривать линейную электрическую цепь. На вход цепи подключен гармонический источник (воздействие). На выходе рассматривается реакция цепи (отклик на воздействие).

Под комплексной передаточной функцией понимают отношение комплексного изображения гармонической реакции ЛЭЦ к комплексному изображению воздействия на цепь.

Пусть воздействие , а реакция - ; а комплексная передаточная функция . Тогда . Если воздействие гармоническое и мы будем менять частоту, то получим комплексную частотную характеристику (КЧХ).

Сокращенно функцию T() называют комплексным коэффициентом передачи. Модуль комплексного коэффициента T(ω) представляет собой амплитудно-частотную характеристику (АЧХ). Аргумент комплексного коэффициента передачи - это фазово-частотная характеристика (ФЧХ).

АЧХ – это такая характеристика цепи, которая показывает, как изменяется в зависимости от частоты отношение амплитуды реакции (выходного сигнала) к амплитуде воздействия (входного сигнала) при гармоническом воздействии.

ФЧХ – это такая характеристика цепи, которая показывает, как изменяется сдвиг фаз выходного и входного сигнала в зависимости от частоты при гармоническом воздействии.

Это основные характеристики электрических цепей. Теоретически они рассчитываются с помощью расчетных методов на основе законов Ома и Кирхгофа в комплексной форме. Практически они измеряются с использованием приборов (вольтметров, фазометров, осциллографов).

В зависимости от вида реакции и воздействия различают четыре типа передаточных функций: по напряжению (напряжение / напряжение), по току (ток / ток), по сопротивлению (напряжение / ток), по проводимости (ток /напряжение ).

Для примера рассмотрим колебательный контур:

Q>>1

кривая пунктирная при Q<1.,

при ω=ω0 К0=Q

С использованием расстройки

6. Влияние внешних сопротивлений на избирательность контура (на добротность и полосу пропускания)

1) Влияние внутреннего сопротивления источника

добротность уменьшается, коэффициент подавления помехи уменьшается (на той же частоте помехи величина расстройки ξ будет меньше), полоса пропускания увеличивается. Избирательность (подавление помех) ухудшается.

2) Влияние сопротивления нагрузки

Появляется некоторое добавочное сопротивление . , т.к. добротность рассматривается на резонансной частоте. Добротность уменьшается, полоса пропускания возрастает, а коэффициент подавления помехи уменьшается. Избирательность ухудшается. Любое добавочное сопротивление ухудшает избирательность; это надо учитывать на практике.

Пример расчета

Рассмотрим графики частотной зависимости напряжения на емкости последовательного контура, так же с учетом сопротивления источника сигнала или нагрузки.

Гц

§3. Параллельный колебательный контур

1. Идеализированный контур

- комплексная проводимость.

- резонансная частота - характеристическое сопротивление, сопротивление реактивного элемента на резонансной частоте, На ней Y=1/R

, - усилительная способность контура где IL0, IC0 – токи на резонансной частоте; I – общий ток. Полоса пропускания П определяется аналогично, как для последовательного контура по уровню половинной активной мощности. Коэффициент подавления помехи: Рассчитаем токи в ветвях идеального параллельного контура при резонансе. При резонансе (=р) токи в ветвях контура равны и в Q раз больше тока в общей ветви. Поэтому резонанс в параллельном контуре называется резонансом токов.

Векторные диаграммы:

ω < ω0 ω > ω0 ω = ω0

2. Реальный параллельный контур Схема замещения:

Условие резонанса:

Условие приближения к идеальному контуру:

Резонансное сопротивление:

Frame24

Векторная диаграмма: