Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК по теплотехнике.doc
Скачиваний:
27
Добавлен:
04.12.2018
Размер:
3.9 Mб
Скачать

3.1.6. Понятие теплоёмкости

Теплоемкостью называется отношение количества тепла по балансу рабочего тела к изменению температуры этого тела в рассматриваемом процессе (z), включающем внешний и внутренний теплообмен.

(3.39)

Величина qz в уравнении зависит не только от интервала температур t2 — t1, но и от вида процесса подвода теплоты. Индекс z обозначает тот параметр, который сохраняется постоянным в данном процессе. В термодинамике обычно пользуются понятием теплоемкости при Р=idem и =idem.

=idem , (3.40)

P=idem . (3.41)

Различают теплоемкость массовую, мольную и объемную:

массовая теплоемкость: Cz Дж/(кгК);

мольная теплоемкость: Дж/(кмольК);

объемная теплоемкость: Дж/(м3К);

средняя теплоемкость: Сzm

Если Сz является линейной функцией от температуры, то Cz=a0+ +a1tma, т. е. Сzm=Cz(tma).

Например, в (h, t) координатах при P=idem (рис. 3.9):

Сp=tg=

Средняя теплоемкость определяется из уравнения по таблицам средних теплоемкостей. Меньшие интервалы находятся методом интерполирования.

(3.42)

Рис. 3.9. Определение массовой тепло-

емкости при постоянном давлении

Если теплоемкость не является линейной функцией от температуры, то осреднение производится известными методами Гаусса, Чебышева, Ньютона.

В случае смеси идеальных газов в расчетные соотношения термодинамики входит теплоемкость смеси.

Рис. 3.10. Схемы смешения при постоянном объеме и давлении

Различают две схемы смешения: при V=idem и P=idem (рис. 3.10). При V=idem смешение осуществляется при неизменном уровне внутренней энергии, а при P=idem — при неизменном уровне энтальпии.

На основании I начала термодинамики определяется средняя температура смеси:

где — средние мольные (объемные) и весовые теплоемкости компонентов в интервале температур (Ti — Tm) берутся из справочных таблиц;

— средние мольные (объемные) и весовые теплоемкости смеси в том же интервале температур (Ti — Tm):

3.1.7. Первое начало термодинамики для идеальных газов

3.1.7.1. Закон Майера

Для идеальных газов справедливо утверждение, что внутренняя энергия U и энтальпия h являются функциями только одной температуры (закон Джоуля):

U=u(t); h=u+P=u(t)+RT=h(t). (3.43)

В этих условиях упрощаются выражения теплоемкости:

=idem CV=(u/t)V=dU(t)/dt=CV(t);

P=idem Cp=(h/t)p=dh(t)/dt=Cp(t);

dU=CVdt; dh=Cpdt.

Тогда первое начало термодинамики для идеального газа по балансу рабочего тела:

q=q*+q**=CVdt+Pd=CpdtdP. (3.44)

Из этого соотношения следует закон Майера, устанавливающий равенство между разностью теплоемкостей Ср и С и удельной газовой постоянной R.

СpCV=R. (3.45)

Для молярных теплоемкостей:

8314 Дж/(кмольк).

3.1.7.2. Принцип существования энтропии идеального газа

Из уравнения первого начала термодинамики для идеального газа посредством деления правой и левой частей на абсолютную температуру Т можно получить выражение для энтропии — новой функции состояния.

(3.46)

В интегральной форме:

(3.47)

Начало отсчета функций состояния Р0, 0, Т0 совпадает с началом отсчета функций состояния (U, h), принимается при н. ф. у. (760 мм рт. ст. и 0С) и по этим данным составляют таблицы природных газов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]