
- •552800 И 654600 - Информатика и вычислительная техника
- •Введение
- •Часть 1. Информатика и современное общество
- •1. Информатизация общества и информатика
- •1.1. Информационное общество
- •1.2. Понятие информатики
- •Средства для преобразования информации
- •Часть 2. Информация, ее представление и измерение
- •2. Информация
- •2.1. Понятие и характерные черты информации
- •2.2. Классификация информации
- •2.3. Свойства информации
- •3. Сигнал как материальный носитель информации
- •3.1. Виды сигнала
- •3.2. Преобразования сигнала
- •3.3. Системы счисления
- •3.3.1. Правила перевода чисел из одной системы счисления в другую
- •3.3.1.1. Правила перевода целых чисел
- •3.3.1.2. Правила перевода правильных дробей
- •3.3.1.3. Правило перевода дробных чисел
- •3.3.2. Правила выполнения простейших арифметических действий
- •3.3.2.1. Правила сложения
- •3.3.2.2. Правила вычитания
- •3.3.2.3. Правила умножения
- •3.3.2.4. Правила деления
- •4. Кодирование дискретного сигнала
- •4.1. Кодирование по образцу
- •4.1.1. Прямые коды
- •4.1.2. Ascii-коды
- •4.1.3. Коды, учитывающие частоту информационных элементов
- •4.1.4. Коды Грея
- •4.1.5. Код Штибица
- •4.2. Криптографическое кодирование
- •4.2.1. Метод простой подстановки
- •4.2.2. Метод Вижинера
- •4.3. Эффективное кодирование
- •4.3.1. Метод Шеннона-Фано
- •4.3.2. Метод Хаффмена
- •4.3.3. Повышение эффективности кодирования
- •4.3.4. Декодирование эффективных кодов
- •4.3.5. Специальные методы эффективного кодирования
- •4.3.5.1. Методы эффективного кодирования числовых последовательностей
- •4.3.5.2. Методы эффективного кодирования словарей
- •Основной вспомогательный
- •4.3.5.3. Методы эффективного кодирования естественно-языковых текстов
- •4.4. Помехозащитное кодирование
- •4.4.1. Искажение кодовых комбинаций
- •4.4.2. Кодовое расстояние и корректирующая способность кода
- •4.4.3. Коды, исправляющие ошибки
- •5. Измерение информации
- •5.1. Структурный подход к измерению информации
- •5.1.1. Геометрическая мера
- •5.1.2. Комбинаторная мера
- •5.1.3. Аддитивная мера
- •5.2. Статистический подход к измерению информации
- •5.3. Взаимосвязь структурного и статистического подходов к измерению информации
- •5.4. Семантический подход к измерению информации
- •5.4.1. Целесообразность информации
- •5.4.2. Полезность информации
- •5.4.3. Истинность информации
- •6. Качество информации
- •Часть 3. Компьютер как основной элемент информационного процесса
- •7. Структура компьютера и принципы его функционирования
- •8. Виды современных компьютеров
- •9. Структурные элементы компьютера
- •9.1. Память
- •9.1.1. Внутренняя память
- •9.1.2. Внешняя память
- •9.1.2.1. Физическая и логическая структура магнитных дисков
- •9.2. Устройство управления
- •9.3. Арифметико-логическое устройство
- •9.3.1. Структура и принцип действия
- •9.3.2. Формы представления числовых данных
- •9.3.2.1. Формы представления целых чисел
- •9.3.2.2. Формы представления вещественных чисел
- •9.3.3. Коды представления числовых данных
- •9.3.4. Принципы выполнения арифметической операции сложения
- •9.3.4.1. Сложение целых чисел
- •9.3.4.2. Сложение вещественных чисел
- •10. Виды программного обеспечения компьютера
- •Инструментарий технологии программирования.
- •10.1. Системное программное обеспечение
- •Системное по базовое по сервисное по (утилиты) операционные системы операционные оболочки
- •10.2. Пакеты прикладных программ
- •10.3. Инструментарий технологии программирования
- •Инструментарий технологии программирования
- •11. Поколения эвм
- •12. Технология проектирования программ
- •12.1. Формализация задачи
- •12.2. Программирование задачи
- •12.2.1. Разработка алгоритма
- •12.2.1.1. Способы описания алгоритма
- •12.2.1.2. Методы проектирования алгоритмов
- •12.3. Отладка программы
- •13. Эволюция использования компьютеров. Проект эвм пятого поколения
- •Часть 4. Фазы обращения информации
- •14. Структура информационного процесса
- •15. Сбор информации
- •15.1. Методы классификации
- •15.1.1. Иерархическая классификация
- •15.1.2. Фасетная классификация
- •15.2. Методы кодирования
- •15.3. Распознавание и кодирование объектов
- •15.4. Регистрация информации
- •16. Восприятие информации
- •16.1. Сканер как устройство восприятия информации
- •16.1.1. Первичное восприятие и измерение информации
- •16.1.2. Анализ результатов первичного восприятия и измерения
- •16.1.3. Распознавание символов
- •16.2. Восприятие информации клавиатурой
- •16.2.1. Первичное восприятие и измерение
- •16.2.2. Анализ
- •16.2.3. Распознавание
- •17. Передача информации
- •17.1. Модуляция и демодуляция сигнала
- •17.2. Уплотнение сигнала и выделение уплотненного сигнала
- •17.4. Компьютерные сети
- •17.4.1. Топология сетей
- •17.4.2. Методы передачи данных в сетях
- •17.4.3. Организация обмена информацией в сети
- •18. Обработка информации
- •19. Представление информации
- •19.1. Устройства вывода на электронный носитель
- •19.1.1. Мониторы, использующие элт
- •19.1.2. Жидкокристаллические мониторы
- •19.1.3. Плазменные мониторы
- •19.1.4. Технология вывода изображений на мониторы, использующие элт
- •19.1.4.1. Принципы организации текстовых видеорежимов
- •19.1.4.2. Принципы организации графических видеорежимов
- •19.2. Устройства вывода на бумажный носитель
- •19.2.1. Технология формирования цвета
- •19.2.2. Матричные принтеры
- •19.2.3. Струйная технология
- •19.2.4. Термическая технология
- •19.2.5. Электрографическая технология
- •Приложение 1. Определения информатики
- •Приложение 2. Определения информации
- •Приложение 3. Положения комбинаторики, используемые в измерении информации
- •Список литературы
- •Оглавление
- •Часть 1. Информатика и современное общество 6
- •Часть 2. Информация, ее представление и измерение 11
- •Часть 3. Компьютер как основной элемент информационного процесса 81
- •Часть 4. Фазы обращения информации 154
3.2. Преобразования сигнала
Для преобразования аналогового сигнала в дискретный используется процедура, которая называется квантованием. Различают два вида квантования – по времени и по уровню (дискретизацию).
Квантование по времени – замена непрерывной (по времени и по уровню) функции x(t) (рис. 3.1а) некоторым множеством непрерывных (по уровню) функций x(ti) (на рис. 3.1б i = {1,2,3,4}).
x x
x(t3) x(t3)
x(t2) x(t4) x(t2) x(t4)
x(t1) x(t1)
x(t)
t1 t2 t3 t4 t t1 t2 t3 t4 t
а) б)
Рис. 3.1. Иллюстрация к квантованию по времени:
а) аналоговый сигнал x(t) до квантования;
б) дискретный (по времени) сигнал x(t) – результат квантования.
Очевидно, дискретизация связана с потерей информации. В самом деле, дискретный сигнал на рис. 3.1б не показывает, как ведет себя исходный сигнал в моменты времени, например, между t3 и t4. Иначе говоря, дискретизация связана с некоторой погрешностью , которая зависит от шага дискретизации t = ti – ti-1: при малых значениях шага дискретизации число точек замера высоко, и теряется мало информации; очевидно, картина обратная при больших шагах дискретизации. Погрешность дискретизации в каждый момент времени t определяется по формуле:
(t) = x(t) – v(t), (3.1)
где v(t) – функция восстановления, которая по дискретным значениям восстанавливает x(t).
Виды дискретизации различаются по регулярности отсчетов:
-
равномерная дискретизация, когда t постоянно;
-
неравномерная дискретизация, когда t переменно, причем этот вид, в свою очередь, делится на подвиды:
-
адаптивную, когда t меняется автоматически в зависимости от текущего изменения сигнала. Это позволяет увеличивать шаг дискретизации, когда изменения сигнала x(t) незначительны, и уменьшать – в противном случае;
-
программируемую, когда t изменяется оператором или в соответствии с заранее выставленными условиями, например, в фиксированные моменты времени.
Квантование по уровню - преобразование непрерывных (по уровню) сигналов x(ti) в моменты отсчета ti в дискретные. В результате непрерывное множество значений сигнала x(ti) в диапазоне от xmin до xmax преобразуется в дискретное множество значений xk – уровней квантования (рис. 3.2). Шаг квантования x определяется по формуле:
x = xj – xj-1 .
Можно сказать, что квантование по уровню – это измерение сигнала. В самом деле, по рис. 3.2б видно, что сигнал x(t1) составляет 0 уровней квантования (k = 0), а сигнал x(t4) – 2 уровня квантования (k = 2).
x(t) x(t)
x2
x x1 xmin
x(t1) x(t1)
t1 t2 t3 t4 t t1 t2 t3 t4 t
а) б)
Рис. 3.2. Иллюстрация к квантованию по уровню:
а) аналоговые по уровню (но дискретные по времени) сигналы x(ti) до квантования;
б) квантованные по уровню сигналы x(ti).
При квантовании по уровню не всегда сигнал x(ti) совпадает с уровнем квантования (см. сигнал x(t2) на рис. 3.2б). В таком случае поступают одним из следующих способов:
-
x(ti) отождествляют с ближайшим значением (в нашем примере – с x2);
-
x(ti) отождествляют с ближайшим меньшим (или большим) значением. Тогда при отождествлении с ближайшим большим значением сигнал x(t2) отождествится с x2 независимо от того, насколько близко он к этому уровню квантования находится. При отождествлении с ближайшим меньшим значением сигнал x(t2) отождествится с x1 также независимо от того, насколько близко он к этому уровню квантования находится.
Очевидно, и при квантовании по уровню возникает погрешность квантования (xk):
(xk) = x(ti) - xk. (3.2)
Погрешность квантования по уровню тем меньше, чем меньше шаг квантования.
Виды квантования по уровню:
-
равномерное, когда диапазон изменения сигнала разбивается на m одинаковых частей. Тогда, зная размер шага квантования, для представления xk достаточно знать число k.
-
неравномерное, когда диапазон изменения сигнала разбивается на m различных частей.