Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по информатики.doc
Скачиваний:
45
Добавлен:
13.11.2018
Размер:
1.53 Mб
Скачать

19.2.1. Технология формирования цвета

Устройства вывода на бумажный носитель работают с другими пер­вичными цветами, нежели мониторы, и используют соответственно иную модель цветообразования - субтрактивную (subtraction - вычитание). Это может создавать боль­шие проблемы при выводе инфор­мации с экрана на устройство вывода, пос­кольку не всегда достигается пол­ное соответствие цветов. Для это­го обычно служит специальное про­граммное обеспечение.

Первичными цветами для цветных принтеров являются зеле­но-голубой (Cyan), светло-красный (Magenta) и желтый (Yellow). На­ложение двух из этих первичных цветов в данном случае дает красный, зеленый или голубой цвет. Смешение всех трех первичных цветов субтрактивной модели дает черный цвет. В некоторых устройствах вывода для получения истинно черного цвета используется отдельный чер­ный краситель (blacK), поэтому данная модель цветообразования называется также CMY или CMYK.

Модели цветообразования для мониторов и устройств вывода на бумажный носитель различаются по следующим причинам. Человеческие глаза являются сложной оптической системой, ко­торая воспринимает излучаемый или уже отраженный от освещае­мых предметов свет. Цвет, в свою очередь, определяется длиной волны электромагнитного излучения, определенный частот­ный спектр которого и представляет видимый свет. Таким образом, нанесенные на экран точки люминофора воспри­нимаются именно того цвета, ка­кой они и излучают. Краситель же, нанесенный на бумагу, напротив, действует как фильтр, поглощая (вычитая!) одни и отражая другие длины электромагнитных волн. Напомним также, что насыщенность цвета (розовый, красный, пурпур­ный) зависит от количества бело­го цвета. Таким образом, промежу­точные цвета при выводе изобра­жения, например, розового, полу­чаются, как правило, путем пропус­ка (непечати) нескольких точек.

Собственно, это обычный подход, связанный с растрированием изо­бражения. Оттенки соответствующего цвета получаются путем группиров­ки нескольких точек изображения в псевдопикселы размером 2х2, ЗхЗ и более точек. Отношение количес­тва цветных точек к белым и оп­ределяет уровень насыщенности цвета.

19.2.2. Матричные принтеры

Идея матричных пе­чатающих устройств заключается в том, что требуемое изображение воспроизводится из набора отдель­ных точек, наносимых на бумагу тем или иным способом. Принцип работы цвет­ных матричных принтеров заключается в том, что иглы головки вывода «вко­лачивают» краситель с ленты пря­мо в бумагу (структура головки вывода для девятиигольчатого принтера приведена на рис. 19.7). В отличие от обычных монохромных устройств, в послед­нем случае используется многоцвет­ная лента. Система управления этих принтеров заботится не только о конкретной иголке, но и цвете лен­ты.

1 2 1 – иголки,

2 - автономные быстрые электроприводы

для каждой иголки.

Рис. 19.7. Схема головки вывода для девятиигольчатого матричного принтера

19.2.3. Струйная технология

Струйная технология явля­ется на сегодняшний день самой распространенной для реализации цветных устройств вывода. Упрощенная схема струйного устройства вывода представлена на рис. 19.8.

Эмиттер

Ускоряющий блок

Блок управления

Блок синхронизации

лист

бумаги

Рис. 19.8. Упрощенная схема струйного устройства вывода

В эмиттере под давлением из сопла поступают чернила. Ускоряющий блок электризует и ускоряет капельный поток, при этом каждой из капель сообщается определенный электрический заряд. В блоке управления изменяется траектория полета капель с помощью отклоняющих пластин, а также выполняется включение и отключение струи. Блок синхронизации синхронизует работу остальных устройств.

Струйные устройства вывода подразделяют­ся на устройства непрерывного и дискретного дей­ствия. Последние, в свою очередь, делят­ся на две категории: с нагревани­ем чернил («пузырьковая» техноло­гия) и основанные на действии пьезоэффекта.

В простейшем случае принцип действия устройства по технологии непрерывного действия основан на том, что струя чернил, постоянно испуска­емая из сопла печатающей голов­ки, направляется либо на бумагу (для нанесения изображения), либо в специальный приемник, откуда чернила снова попадают в общий резервуар. В рабочую камеру чер­нила подаются микронасосом, а элементом, задающим их движение, является, как правило, пьезодатчик. Данный принцип дейст­вия ис­пользует сегодня очень небольшое количество устройств вывода.

При реализации дискретного метода с нагреванием чернил в каждом сопле печатающей головки находится маленький нагреватель­ный элемент (например, тонкопленочный резистор). При пропуска­нии тока через тонкопленочный резистор последний за несколько микросекунд нагревается до темпе­ратуры около 500 градусов и отда­ет выделяемое тепло непосредствен­но окружающим его чернилам. При резком нагревании образуется чер­нильный паровой пузырь, который старается вытолкнуть через выход­ное отверстие сопла каплю жидких чернил. Поскольку при отключении тока тонкопленочный резистор так­же быстро остывает, паровой пу­зырь, уменьшаясь в размерах, «под­сасывает» через входное отверстие сопла новую порцию чернил, ко­торые занимают место «выстреленной» капли. Схема термоструйной головки показана на рис. 19.9.

2 3 1 – сопловая пластина;

1 2 – тонкопленочная плата;

3 – корпус;

6 4 – резервуар для чернил;

5 – микрорезистор;

5 4 6 – сопловое отверстие.

Рис. 19.9. Схема термоструйной головки

Второй метод для управления соплом при дискретной технологии ос­нован на действии диафрагмы, со­единенной с пьезоэлектрическим элементом. Пьезоэффект заключается в дефор­мации пьезокристалла под воздей­ствием электрического поля. Изме­нение размеров пьезоэлемента, рас­положенного сбоку выходного от­верстия сопла и связанного с диа­фрагмой, приводит к выбрасыванию капли и приливу через входное от­верстие новой порции чернил.

Сопла (канальные отверстия) на печатающей головке струйных устройств вывода, через которые разбрызгиваются чернила, соответ­ствуют «ударным» иглам матричных принтеров. Поскольку размер каж­дого сопла существенно меньше диаметра иглы (тоньше человечес­кого волоса), а количество сопел может быть больше, то получаемое изображение теоретически должно быть в этом случае четче. К сожа­лению, на практике это достигается только применением специальных чернил.