Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_2.doc
Скачиваний:
10
Добавлен:
27.10.2018
Размер:
1.06 Mб
Скачать

Билет №9

1. Определение интеграла Римана.

Риман формализовал понятие интеграла, разработанное Ньютоном и Лейбницем, как площади подграфика (фигуры, заключенной между графиком функции и осью абсцисс). Для этого он рассмотрел фигуры, состоящие из нескольких вертикальных прямоугольников и получающиеся при разбиении отрезка (см. рисунок). Если при «размельчении» разбиения существует предел, к которому сходятся площади таких фигур (интегральные суммы), этот предел называется интегралом Римана функции на отрезке.

Определение через интегральные суммы:

Пусть на отрезке [a,b] определена вещественнозначная функция f.

Рассмотрим разбиение отрезка — конечное множество попарно различных точек отрезка. Это разбиение делит отрезок [a,b] на n отрезков . Длина наибольшего из отрезков δR =max(Δxi), называется шагом разбиения, где Δxi = xi − xi − 1 – длина элементарного отрезка.

Отметим на каждом отрезке разбиения по точке . Интегральной суммой называется выражение .

Если при стремлении шага разбиения к нулю интегральные суммы стремятся к одному и тому же числу, независимо от выбора , то это число называется интегралом функции f на отрезке [a,b], т.е. .

В этом случае, сама функция f называется интегрируемой (по Риману) на [a,b]; в противном случае f является неинтегрируемой (по Риману) на отрезке [a,b].

Свойства:

  1. Невырожденность:

  2. Положительность: Если интегрируемая функция f неотрицательна, то её интеграл по отрезку [a,b] также неотрицателен.

  3. Линейность: Если функции f и g интегрируемы, и , то функция αf + βg тоже интегрируема, и .

  4. Непрерывность: Если интегрируемые функции fi равномерно сходятся на отрезке [a,b] к функции f, то f интегрируема, и . (Последняя формула может быть получена уже как формальное следствие свойств 1-3 и интегрируемости предельной функции.)

  5. Аддитивность при разбиениях отрезка Пусть a < b < c. Функция f интегрируема на отрезке [a,c], тогда и только тогда, когда она интегрируема на каждом из отрезков [a,b] и [b,c], при этом .

  6. Непрерывная на отрезке функция интегрируема по Риману (следствие свойств 1-5). Разрывные функции могут быть интегрируемы, но могут и не быть; примером функции, не интегрируемой по Риману, является всюду разрывная функция Дирихле. Критерий Лебега интегрируемости функции по Риману: функция интегрируема по Риману на отрезке [a,b], если и только если на этом отрезке она ограничена, и множество точек, где она разрывна, имеет нулевую меру (то есть может быть покрыто счётным семейством интервалов со сколь угодно малой суммарной длиной).

  7. Если функция F является первообразной непрерывной функции f, то интеграл функции f на отрезке [a,b] может быть вычислен по формуле Ньютона-Лейбница: он равен F(b) − F(a). (Это - общее свойство любых интегралов, удовлетворяющих свойствам 1-5, а не только интеграла Римана.) Непрерывная на отрезке функция f всегда имеет первообразную, и каждая первообразная имеет вид: , где C - произвольная константа.

2. Суммы Дарбу. Критерий интегрируемости функции, ограниченной на отрезке.

Пусть на отрезке [a,b] определена вещественнозначная функция f. Рассмотрим разбиение .

Введем обозначения

,

Наконец, рассмотрим суммы

– нижняя сумма Дарбу,

– верхняя сумма Дарбу.

Нижняя (зеленая) и верхняя (серая) суммы Дарбу

Критерий Дарбу интегрируемости функции

Приведенные утверждения даны для функции одной переменной.

Пусть вещественнозначная функция определена и ограничена на отрезке . Пусть и - верхний и нижний интегралы Дарбу функции на заданном отрезке соответственно. Тогда следующие 3 условия эквивалентны:

интегрируема по Риману на отрезке ,

,

, где τ и Δτ — некоторое разбиение и его мелкость.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]