
Micro-Cap v7.1.6 / RM
.PDF
Examples
.MODEL M1 NMOS (W=0.2 L=0.8U KP=1E-6 GAMMA=.65)
.MODEL M2 PMOS (W=0.1 L=0.9U KP=1.2E-6 LAMBDA=1E-3)
Common model parameters
These model parameters are common to all levels: All models except 8 share common default values. Level 8 default values are shown in the last column.
Name |
Parameter |
Units |
Default Values For |
|
|
|
|
Lev 1-5 |
Lev 8 |
LEVEL |
Model level |
|
1 |
1 |
L |
Channel length |
m |
DEFL |
DEFL |
W |
Channel width |
m |
DEFW |
DEFW |
RDS |
Drain-source shunt resistance |
Ω |
∞ |
∞ |
RD |
Drain ohmic resistance |
Ω |
0.00 |
0.00 |
RS |
Source ohmic resistance |
Ω |
0.00 |
0.00 |
RG |
Gate ohmic resistance |
Ω |
0.00 |
0.00 |
RB |
Bulk ohmic resistance |
Ω |
0.00 |
0.00 |
RSH |
Source and drain sheet res. |
Ω /sq |
0.00 |
0.00 |
CGDO |
Gate-drain overlap cap. |
F/m |
0.00 |
0.00 |
CGSO |
Gate-source overlap cap. |
F/m |
0.00 |
0.00 |
CGBO |
Gate-bulk overlap cap. |
F/m |
0.00 |
0.00 |
CBD |
Bulk p-n zero-bias B-D cap. |
F |
0.00 |
0.00 |
CBS |
Bulk p-n zero-bias B-S cap. |
F |
0.00 |
0.00 |
CJ |
Bulk p-n zero-bias bot. cap. |
F/m2 |
0.00 |
5E-4 |
CJSW |
Bulk p-n zero-bias s/w cap. |
F/m |
0.00 |
5E-10 |
MJ |
Bulk p-n zero-bias bottom grad. |
|
0.50 |
0.50 |
MJSW |
Bulk p-n zero-bias s/w coeff. |
|
0.33 |
0.33 |
TT |
Bulk p-n transit time |
S |
0.00 |
0.00 |
IS |
Bulk p-n saturation current |
A |
1E-14 |
1E-14 |
N |
Bulk p-n emission coefficient |
A/m2 |
1.00 |
1.00 |
JS |
Bulk p-n bot. current density |
1E-8 |
1E-4 |
|
PB |
Bulk p-n bottom potential |
V |
0.80 |
1.00 |
PBSW |
Bulk p-n sidewall potential |
V |
PB |
1.00 |
KF |
Flicker-noise coefficient |
|
0.00 |
0.00 |
AF |
Flicker-noise exponent |
|
1.00 |
1.00 |
FC |
Forward-bias depletion coeff. |
|
0.50 |
0.50 |
T_MEASURED |
Measured temperature |
°C |
|
|
T_ABS |
Absolute temperature |
°C |
|
|
T_REL_GLOBAL Relative to current temp. |
°C |
|
|
|
T_REL_LOCAL |
Relative to AKO temperature |
°C |
|
|
428 Chapter 22: Analog Devices

Model equations for levels 1, 2, and 3
Figure 22-12 MOSFET model
Definitions
Vgs = Internal gate to source voltage
Vds = Internal drain to source voltage
Id = Drain current
VT = k•T/q
Temperature effects
T is the device operating temperature and Tnom is the temperature at which the model parameters are measured. Both are expressed in degrees Kelvin. T is set to the analysis temperature from the Analysis Limits dialog box. TNOM is determined by the Global Settings TNOM value, which can be overridden with a .OPTIONS statement. T and Tnom may be customized for each model by specifying the parameters T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL.
For details on how device temperatures and Tnom temperatures are calculated, see the .MODEL section of chapter 20 "Command Statements".
EG(T) = 1.16 - .000702•T•T/(T+1108)
IS(T) = IS•e(EG(Tnom)•T/Tnom-EG(T))/VT
JS(T) = JS•e(EG(Tnom)•T/Tnom-EG(T))/VT
JSSW(T) = JSSW•e(EG(Tnom)•T/Tnom-EG(T))/VT
KP(T) = KP•(T/Tnom)-1.5
UO(T) = UO•(T/Tnom)-1.5
PB(T) = PB•(T/Tnom)- 3•VT•ln((T/Tnom))-EG(Tnom)•(T/Tnom)+EG(T)
430 Chapter 22: Analog Devices

Accumulation region (Vgs < Von - PHI)
For Vgs < Von - PHI,
Cgb = Cox + CGBO • Leff
Cgs = CGSO • W
Cgd = CGDO • W
Depletion region (Von - PHI < Vgs < Von)
Cgb = Cox • (Von - Vgs)/PHI + CGBO • Leff
Cgs = 2/3 • Cox • ((Von - Vgs)/PHI + 1) + CGSO • W
Cgd = CGDO • W
Saturation region (Von < Vgs < Von + Vds)
Cgb = CGBO • Leff
Cgs = 2/3 • Cox + CGSO • W
Cgd = CGDO • W
Linear region:
For Vgs > Von + Vds,
Cgb = CGBO • Leff
Cgs = Cox • (1 - ((Vgs - Vds - Von)/(2•(Vgs - Von) - Vds))2) + CGSO • W Cgd = Cox • (1 - ((Vgs - Von)/(2•(Vgs - Von) - Vds))2) + CGDO • W
Junction capacitance
The junction capacitance is modeled by two nonlinear capacitors, Cbs and Cbd.
If CBS=0 and CBD=0 then
Cbs = CJ(T)•AS•f1(VBS) + CJSW(T)•PS•f2(VBS) + TT•GBS Cbd = CJ(T)•AD•f1(VBD) + CJSW(T)•PD•f2(VBD) + TT•GBD
else
Cbs = CBS(T)•f1(VBS) + CJSW(T)•PS•f2(VBS) + TT•GBS Cbd = CBD(T)•f1(VBD) + CJSW(T)•PD•f2(VBD) + TT•GBD
GBS= DC bulk-source conductance = d(IBS)/d(VBS)
GBD= DC bulk-drain conductance = d(IBD)/d(VBD)
If VBS ≤ FC • PB(T) then f1(VBS) = 1/(1 - VBS/PB(T))M
Else
f1(VBS) = (1 - FC•(1+M)+M•(VBS/PB(T)))/ (1 - FC) (1-M)
432 Chapter 22: Analog Devices
Model parameters for level 5
These are the model parameters for the BSIM 2 model, level 5.
Name |
Parameter |
Units |
Default |
DL |
Channel length reduction |
|
0.00 |
DW |
Channel width reduction |
|
0.00 |
TOX |
Gate oxide thickness |
|
0.00 |
VFB |
Flat band voltage |
V |
-1.00 |
VFBL |
Length dependence of VFB |
V• |
0.00 |
VFBW |
Width dependence of VFB |
V• |
0.00 |
PHI |
Strong inversion surface potential |
V |
0.75 |
PHIL |
Length dependence of PHI |
V• |
0.00 |
PHIW |
Width dependence of PHI |
V• |
0.00 |
K1 |
Bulk effect coefficient 1 |
√ V |
0.80 |
K1L |
Length dependence of K1 |
√ V• |
0.00 |
K1W |
Width dependence of K1 |
√ V• |
0.00 |
K2 |
Bulk effect coefficient 2 |
|
0.00 |
K2L |
Length dependence of K2 |
0.00 |
|
K2W |
Width dependence of K2 |
|
0.00 |
ETA0 |
VDS dependence of threshold voltage |
|
0.00 |
LETA |
Length dependence of ETA0 |
0.00 |
|
WETA |
Width dependence of ETA0 |
|
0.00 |
ETAB |
VBS dependence of ETA0 |
V-1 |
0.00 |
LETAB |
Length dependence of ETAB |
V-1• |
0.00 |
WETAB |
Width dependence of ETAB |
V-1• |
0.00 |
MU0 |
Mobilityatvds=0,vgs=vth |
m2/V•s |
400 |
MU0B |
VBS dependence of MU0 |
m2/V2•s |
0.00 |
LMU0B |
Length dependence of MU0B |
•m2/V2•s |
0.00 |
WMU0B |
Width dependence of MU0B |
•m2/V2•s |
0.00 |
MUS0 |
Mobilityatvds=vdd,vgs=vth |
m2/V•s |
500 |
LMUS0 |
Length dependence of MUS0 |
•m2/V•s |
0.00 |
WMUS0 |
Width dependence of MUS0 |
•m2/V•s |
0.00 |
MUSB |
VBS dependence of MUS |
m2/V2•s |
0.00 |
LMUSB |
Length dependence of MUSB |
•m2/V2•s |
0.00 |
WMUSB |
Width dependence of MUSB |
•m2/V2•s |
0.00 |
MU20 |
VDS dependence of MU in tanh term |
m2/V2•s |
1.5 |
LMU20 |
Length dependence of MU20 |
•m2/V2•s |
0.00 |
WMU20 |
Width dependence of MU20 |
•m2/V2•s |
0.00 |
MU2B |
VBS dependence of MU2 |
m2/V3•s |
0.00 |
LMU2B |
Length dependence of MU2B |
•m2/V3•s |
0.00 |
WMU2B |
Width dependence of MU2B |
•m2/V3•s |
0.00 |
436 Chapter 22: Analog Devices