Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
73
Добавлен:
06.06.2017
Размер:
3.31 Mб
Скачать

Both the original group of SPICE2 model levels 1, 2, and 3 and a BSIM group of models are supported. The BSIM models are supported as levels 4, 5, and 8. Level 4 is the original BSIM1 model. Level 2 is the improved BSIM2 model. Level 8 is the BSIM3 model version 3.3.2, derived from the UC Berkeley code dated 9/ 7/99. Levels 6 and 7 are not used.

<width> and <length> are the drawn device dimensions, before side diffusion, in meters. They can be specified in a circuit, or in a .MODEL or .OPTIONS statement. W and L VALUE attribute values supersede those in the .MODEL statement, which supersede those in the .OPTIONS statement.

The initialization [IC=<vds>[,vgs[,vbs]]] assigns initial voltages to the drainsource, gate-source, and body-source terms in transient analysis if no operating point is done (or if the UIC flag is set). The [OFF] keyword forces the device off during the first iteration of the DC operating point.

<sourceperiphery> and <drainperiphery> are the diffusion peripheries (m). <sourcearea> and <drainarea> are the diffusion areas (sq. m). Source and drain junction capacitances may be specified directly by the model parameters CBS and CBD. If absent, they are calculated from area and periphery terms.

The parasitic resistances may be specified directly with the model parameters RS, RD, RG, and RB. If unspecified, they are calculated from the product of the sheet resistivity, RSH, and the number of squares terms, <drainsquares>, <sourcesquares>, <gatesquares>, and <bulksquares>. If these terms are absent, or zero, and the model parameters RS, RD, RG, and RB are absent or zero, then the parasitic resistances are not included in the model.

<drainsquares> and <sourcesquares> default to 1.0. The other parameter line values default to zero. <width> and <length> default to DEFW and DEFL, defined in the Global Settings dialog box (SHIFT + CTRL + G).

<mval> is a multiplier (default = 1) that provides a way to simulate the effect of paralleling many devices. It multiplies the effective width, overlap, and junction capacitances, and the junction currents. It multiplies the drain and source areas, the device width, and the two peripheries, and divides the four resistances RS, RD, RG, and RB.

Model statement forms

.MODEL <model name> NMOS ([model parameters])

.MODEL <model name> PMOS ([model parameters])

427

Examples

.MODEL M1 NMOS (W=0.2 L=0.8U KP=1E-6 GAMMA=.65)

.MODEL M2 PMOS (W=0.1 L=0.9U KP=1.2E-6 LAMBDA=1E-3)

Common model parameters

These model parameters are common to all levels: All models except 8 share common default values. Level 8 default values are shown in the last column.

Name

Parameter

Units

Default Values For

 

 

 

Lev 1-5

Lev 8

LEVEL

Model level

 

1

1

L

Channel length

m

DEFL

DEFL

W

Channel width

m

DEFW

DEFW

RDS

Drain-source shunt resistance

RD

Drain ohmic resistance

0.00

0.00

RS

Source ohmic resistance

0.00

0.00

RG

Gate ohmic resistance

0.00

0.00

RB

Bulk ohmic resistance

0.00

0.00

RSH

Source and drain sheet res.

/sq

0.00

0.00

CGDO

Gate-drain overlap cap.

F/m

0.00

0.00

CGSO

Gate-source overlap cap.

F/m

0.00

0.00

CGBO

Gate-bulk overlap cap.

F/m

0.00

0.00

CBD

Bulk p-n zero-bias B-D cap.

F

0.00

0.00

CBS

Bulk p-n zero-bias B-S cap.

F

0.00

0.00

CJ

Bulk p-n zero-bias bot. cap.

F/m2

0.00

5E-4

CJSW

Bulk p-n zero-bias s/w cap.

F/m

0.00

5E-10

MJ

Bulk p-n zero-bias bottom grad.

 

0.50

0.50

MJSW

Bulk p-n zero-bias s/w coeff.

 

0.33

0.33

TT

Bulk p-n transit time

S

0.00

0.00

IS

Bulk p-n saturation current

A

1E-14

1E-14

N

Bulk p-n emission coefficient

A/m2

1.00

1.00

JS

Bulk p-n bot. current density

1E-8

1E-4

PB

Bulk p-n bottom potential

V

0.80

1.00

PBSW

Bulk p-n sidewall potential

V

PB

1.00

KF

Flicker-noise coefficient

 

0.00

0.00

AF

Flicker-noise exponent

 

1.00

1.00

FC

Forward-bias depletion coeff.

 

0.50

0.50

T_MEASURED

Measured temperature

°C

 

 

T_ABS

Absolute temperature

°C

 

 

T_REL_GLOBAL Relative to current temp.

°C

 

 

T_REL_LOCAL

Relative to AKO temperature

°C

 

 

428 Chapter 22: Analog Devices

Model parameters for levels 1, 2, and 3

In addition to the 32 common parameters, the following table lists the additional parameters used in the level 1, 2, and 3 models.

Name

Parameter

Units

Default Level

LD

Lateral diffusion length

m

0.00

1,2,3

WD

Lateral diffusion width

m

0.00

1,2,3

KP

Process transconductance

A/V2

2E-5

1,2,3

VTO

Zero-bias threshold voltage

V

0.00

1,2,3

GAMMA

Body-effect coefficient

V0.5

0.00

1,2,3

PHI

Surface inversion potential

V

0.60

1,2,3

LAMBDA

Channel-lengthmodulation

V-1

0.00

1,2

TOX

Thin oxide thickness

m

1E-7

1,2,3

UO

Surface mobility

cm2/V/s 600

2,3

NEFF

Total channel charge coeff.

cm-3

1.0

2

NSUB

Substrate doping density

None

2,3

NSS

Surface state density

cm-2

None

2,3

NFS

Fast surface-state density

cm-2

None

2,3

XJ

Metallurgical junction depth

m

0.00

2,3

VMAX

Max drift velocity of carriers

m/s

0.00

2,3

DELTA

Width effect on VTO

V-1

0.00

2,3

THETA

Mobilitymodulation

0.00

3

ETA

Static feedback on VTO

 

0.00

3

KAPPA

Saturation field factor

 

0.20

3

TPG

Type of gate material

 

1.00

2,3

XQC

Coeff. of channel charge share

 

1.00

2,3

UCRIT

Mobility degrad. critical field

V/cm

1E4

2

UEXP

Mobility degradation exponent

 

0.00

2

UTRA

Mobility degrad. tr. field coeff.

m/s

0.00

2

GDSNOI

Channel shot noise coefficient

 

1.0

ALL

NLEV

Noise equation selector

 

2.0

ALL

429

Model equations for levels 1, 2, and 3

Figure 22-12 MOSFET model

Definitions

Vgs = Internal gate to source voltage

Vds = Internal drain to source voltage

Id = Drain current

VT = kT/q

Temperature effects

T is the device operating temperature and Tnom is the temperature at which the model parameters are measured. Both are expressed in degrees Kelvin. T is set to the analysis temperature from the Analysis Limits dialog box. TNOM is determined by the Global Settings TNOM value, which can be overridden with a .OPTIONS statement. T and Tnom may be customized for each model by specifying the parameters T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL.

For details on how device temperatures and Tnom temperatures are calculated, see the .MODEL section of chapter 20 "Command Statements".

EG(T) = 1.16 - .000702TT/(T+1108)

IS(T) = ISe(EG(Tnom)•T/Tnom-EG(T))/VT

JS(T) = JSe(EG(Tnom)•T/Tnom-EG(T))/VT

JSSW(T) = JSSWe(EG(Tnom)•T/Tnom-EG(T))/VT

KP(T) = KP(T/Tnom)-1.5

UO(T) = UO(T/Tnom)-1.5

PB(T) = PB(T/Tnom)- 3VTln((T/Tnom))-EG(Tnom)(T/Tnom)+EG(T)

430 Chapter 22: Analog Devices

PBSW(T) = PBSW(T/Tnom)- 3VTln((T/Tnom))-EG(Tnom)(T/Tnom)+EG(T)

PHI(T) = PHI(T/Tnom)- 3VTln((T/Tnom))-EG(Tnom)(T/Tnom)+EG(T)

CBD(T) = CBD(1+MJ(.0004(T-Tnom) + (1 - PB(T)/PB)))

CBS(T) = CBS(1+MJ(.0004(T-Tnom) + (1 - PB(T)/PB)))

CJ(T) = CJ(1+MJ(.0004(T-Tnom) + (1 - PB(T)/PB)))

CJSW(T) = CJSW(1+MJ(.0004(T-Tnom) + (1 - PB(T)/PB))

The parasitic lead resistances have no temperature dependence.

Current equations

Only the Level 1 drain equations are shown here. The Level 2 and Level 3 current equations are too complex for presentation in this manual. Interested users should consult reference (2) for more information.

K = KP W/ (L - 2 LD)

VTH = VTO + GAMMA ((PHI - VBS)1/2- √ (PHI))

Cutoff region: For Vgs < VT

Id = 0.0

Linear region: For Vgs > VTH and Vds < (Vgs - VTH)

Id = K(Vgs - VTH - 0.5Vds)Vds(1+LAMBDAVds)

Saturation region: For Vgs > VTH and Vds > (Vgs - VTH)

Id = 0.5K(Vgs - VTH)2(1 + LAMBDAVds)

These equations are for an N-channel device.

Capacitance equations

Meyer model for gate capacitance

All levels use the SPICE 2G.6 capacitance model proposed by Meyer when XQC is specified or greater than 0.5. If XQC is specified and is less than or equal to .5, the Ward model is used. Meyer's model does not guarantee charge conservation, but is generally more robust than the Ward model.

The charges are modeled by three nonlinear capacitances, Cgb, Cgd, and Cgs.

Cox = COX W Leff

431

Accumulation region (Vgs < Von - PHI)

For Vgs < Von - PHI,

Cgb = Cox + CGBO Leff

Cgs = CGSO W

Cgd = CGDO W

Depletion region (Von - PHI < Vgs < Von)

Cgb = Cox (Von - Vgs)/PHI + CGBO Leff

Cgs = 2/3 Cox ((Von - Vgs)/PHI + 1) + CGSO W

Cgd = CGDO W

Saturation region (Von < Vgs < Von + Vds)

Cgb = CGBO Leff

Cgs = 2/3 Cox + CGSO W

Cgd = CGDO W

Linear region:

For Vgs > Von + Vds,

Cgb = CGBO Leff

Cgs = Cox (1 - ((Vgs - Vds - Von)/(2(Vgs - Von) - Vds))2) + CGSO W Cgd = Cox (1 - ((Vgs - Von)/(2(Vgs - Von) - Vds))2) + CGDO W

Junction capacitance

The junction capacitance is modeled by two nonlinear capacitors, Cbs and Cbd.

If CBS=0 and CBD=0 then

Cbs = CJ(T)ASf1(VBS) + CJSW(T)PSf2(VBS) + TTGBS Cbd = CJ(T)ADf1(VBD) + CJSW(T)PDf2(VBD) + TTGBD

else

Cbs = CBS(T)f1(VBS) + CJSW(T)PSf2(VBS) + TTGBS Cbd = CBD(T)f1(VBD) + CJSW(T)PDf2(VBD) + TTGBD

GBS= DC bulk-source conductance = d(IBS)/d(VBS)

GBD= DC bulk-drain conductance = d(IBD)/d(VBD)

If VBS ≤ FC PB(T) then f1(VBS) = 1/(1 - VBS/PB(T))M

Else

f1(VBS) = (1 - FC(1+M)+M(VBS/PB(T)))/ (1 - FC) (1-M)

432 Chapter 22: Analog Devices

If VBS ≤ FC PBSW(T) then

f2(VBS) = 1/ (1 - VBS/PBSW(T))M Else

f2(VBS) = (1 - FC(1+M)+M(VBS/PBSW(T)))/ (1 - FC) (1-M)

If VBD ≤ FC PB(T) then f1(VBD) = 1/(1 - VBD/PB(T))M

Else

f1(VBD) = (1 - FC(1+M)+M(VBS/PB(T)))/ (1 - FC) (1-M)

If VBD ≤ FC PBSW(T) then

f2(VBD) = 1/ (1 - VBD/PBSW(T))M Else

f2(VBD) = (1 - FC(1+M)+M(VBD/PBSW(T)))/ (1 - FC) (1-M)

433

Model parameters for level 4

These are the model parameters for the BSIM1 model, level 4. There are no default values. All parameter values must be specified.

Name

Parameter

DL

Channel length reduction

DW

Channel width reduction

TOX

Gate oxide thickness

VFB

Flat band voltage

VFBL

Length dependence of VFB

VFBW

Width dependence of VFB

PHI

Strong inversion surface potential

PHIL

Length dependence of PHI

PHIW

Width dependence of PHI

K1

Bulk effect coefficient 1

K1L

Length dependence of K1

K1W

Width dependence of K1

K2

Bulk effect coefficient 2

K2L

Length dependence of K2

K2W

Width dependence of K2

ETA

VDS dependence of threshold voltage

LETA

Length dependence of ETA

WETA

Width dependence of ETA

X2E

VBS dependence of ETA

LX2E

Length dependence of X2E

WX2E

Width dependence of X2E

X3E

VDS dependence of ETA

LX3E

Length dependence of X3E

WX3E

Width dependence of X3E

MUZ

Mobilityatvds=0,vgs=vth

X2MZ

VBS dependence of MUZ

LX2MZ

Length dependence of X2MZ

WX2MZ

Width dependence of X2MZ

MUS

Mobilityatvds=vdd,vgs=vth

LMUS

Length dependence of MUS

WMUS

Width dependence of MUS

X2MS

VBS dependence of MUS

LX2MS

Length dependence of X2MS

WX2MS

Width dependence of X2MS

X3MS

VDS dependence of MUS

LX3MS

Length dependence of X3MS

434 Chapter 22: Analog Devices

Units

V V/m V/m V V/m V/m

V

V/m

V/m

1/m

1/m

1/m

1/m

V-1

V-1/m V-1/m

V-1

V-1/m V-1/m cm2/Vs

Model parameters for level 4 (continued)

Name

Parameter

Units

WX3MS

Width dependence of X3MS

 

U0

VGS dependence of mobility

 

LU0

Length dependence of U0

 

WU0

Width dependence of U0

 

X2U0

VBS dependence of U0

 

LX2U0

Length dependence of X2U0

 

WX2U0

Width dependence of X2U0

 

U1

VDS dependence of mobility

 

LU1

Length dependence of U1

 

WU1

Width dependence of U1

 

X2U1

VBS dependence of U1

 

LX2U1

Length dependence of X2U1

 

WX2U1

Width dependence of X2U1

 

X3U1

VDS dependence of U1

 

LX3U1

Length dependence of X3U1

 

WX3U1

Width dependence of X3U1

 

N0

Subthreshold slope

 

LN0

Length dependence of N0

 

WN0

Width dependence of N0

 

NB

VBS dependence of subthreshold slope

 

LNB

Length dependence of NB

 

WNB

Width dependence of NB

 

ND

VDS dependence of subthreshold slope

 

LND

Length dependence of ND

 

WND

Width dependence of ND

 

VDD

Supply voltage for MUS

 

XPART

Channel charge partitioning flag

 

DELL

Unused: Length reduction of S-D diff.

 

435

Model parameters for level 5

These are the model parameters for the BSIM 2 model, level 5.

Name

Parameter

Units

Default

DL

Channel length reduction

 

0.00

DW

Channel width reduction

 

0.00

TOX

Gate oxide thickness

 

0.00

VFB

Flat band voltage

V

-1.00

VFBL

Length dependence of VFB

V•

0.00

VFBW

Width dependence of VFB

V•

0.00

PHI

Strong inversion surface potential

V

0.75

PHIL

Length dependence of PHI

V•

0.00

PHIW

Width dependence of PHI

V•

0.00

K1

Bulk effect coefficient 1

√ V

0.80

K1L

Length dependence of K1

√ V•

0.00

K1W

Width dependence of K1

√ V•

0.00

K2

Bulk effect coefficient 2

 

0.00

K2L

Length dependence of K2

0.00

K2W

Width dependence of K2

 

0.00

ETA0

VDS dependence of threshold voltage

 

0.00

LETA

Length dependence of ETA0

0.00

WETA

Width dependence of ETA0

 

0.00

ETAB

VBS dependence of ETA0

V-1

0.00

LETAB

Length dependence of ETAB

V-1

0.00

WETAB

Width dependence of ETAB

V-1

0.00

MU0

Mobilityatvds=0,vgs=vth

m2/V•s

400

MU0B

VBS dependence of MU0

m2/V2•s

0.00

LMU0B

Length dependence of MU0B

•m2/V2•s

0.00

WMU0B

Width dependence of MU0B

•m2/V2•s

0.00

MUS0

Mobilityatvds=vdd,vgs=vth

m2/V•s

500

LMUS0

Length dependence of MUS0

•m2/V•s

0.00

WMUS0

Width dependence of MUS0

•m2/V•s

0.00

MUSB

VBS dependence of MUS

m2/V2•s

0.00

LMUSB

Length dependence of MUSB

•m2/V2•s

0.00

WMUSB

Width dependence of MUSB

•m2/V2•s

0.00

MU20

VDS dependence of MU in tanh term

m2/V2•s

1.5

LMU20

Length dependence of MU20

•m2/V2•s

0.00

WMU20

Width dependence of MU20

•m2/V2•s

0.00

MU2B

VBS dependence of MU2

m2/V3•s

0.00

LMU2B

Length dependence of MU2B

•m2/V3•s

0.00

WMU2B

Width dependence of MU2B

•m2/V3•s

0.00

436 Chapter 22: Analog Devices

Соседние файлы в папке Micro-Cap v7.1.6
  • #
    06.06.20171.32 Кб65model.CNT
  • #
    06.06.201776.72 Кб67MODEL.HLP
  • #
    06.06.20173.72 Кб65NETHASP.INI
  • #
    06.06.2017450 б64os.dat
  • #
    06.06.2017545 б68READ.ME
  • #
    06.06.20173.31 Mб73RM.PDF
  • #
    06.06.2017226.69 Кб66setup.bmp
  • #
    06.06.201795 б64SETUP.INI
  • #
  • #
    06.06.201749 б65setup.lid
  • #
    06.06.20172.04 Mб65Standard.cmp