Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
68
Добавлен:
06.06.2017
Размер:
3.31 Mб
Скачать

7. Kenneth Kundert

Designers Guide to SPICE & Spectre

Kluwer Academic Publishers, 1995

8. William J. McCalla

Fundamentals of Computer-Aided Circuit Simulation

Kluwer Academic Publishers, 1988

9. Andrei Vladimiresescu and Sally Liu

The Simulation of MOS Integrated circuits using SPICE2

University of California, Berkeley Memorandum No. UCB / ERL M80/7

10.Lawrence Nagel.

SPICE2: A Computer Program to Simulate Semiconductor Circuits

University of California, Berkeley, Memorandum No. ERL - M520

11.Andrei Vladimirescu

The SPICE Book

John Wiley & Sons, Inc., First Edition, 1994. ISBN# 0-471-60926-9

Device modeling:

12.H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus

GaAsFET Device and Circuit Simulation in SPICE

IEEE Transactions on Electron Devices, ED - 34, 160-169 (1987)

13.Graeme R. Boyle, Barry M. Cohn, Donald O. Petersen, and James E. Solomon

Macromodeling of Integrated Circuit Operational Amplifiers

IEEE Journal of Solid-State Circuits, Vol. SCV-9 No. 6 (1974)

14.W.R Curtice

A MESFET model for use in the design of GaAs integrated circuits

IEEE Transactions on Microwave Theory and Techniques MTT - 28,448-456 (1980)

15.Ian Getreu

Modeling the Bipolar Transistor

Tektronix, 1979

367

16.MOSPOWER Applications copyright 1984, Signetics, Inc.

17.Bing Jay Sheu

MOS Transistor Modeling and characterization for Circuit Simulation

University of California, Berkeley Memo No. UCB / ERL M85/85

18.Yannis P. Tsividis

Operation and Modeling of the MOS Transistor

McGraw-Hill, 1987

19.Paolo Antognetti, and Giuseppe Massobrio

Semiconductor Device Modeling with SPICE.

McGraw-Hill, 1988

20.D. C. Jiles, and D. L. Atherton Theory of Ferromagnetic Hysteresis

Journal of Magnetism and Magnetic Materials, 61, 48 (1986)

21.SallyLiu

A Unified CAD Model for MOSFETs

University of California, Berkeley Memorandum No. UCB / ERL M81/31

22.Y. Cheng, M. Chan, K. Hui, M. Jeng, Z. Liu, J. Huang, K. Chen, J. Chen, R. Tu, P. Ko, C. Hu

BSIM3v3.1 Manual

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

23.Daniel Foty

MOSFET Modeling with SPICE Principles and Practice

Prentice Hall, First Edition, 1997. ISBN# 0-13-227935-5

Filters:

24.Lawrence P. Huelsman

Active and Passive Filter Design, An Introduction

McGraw-Hill, 1993

368 Chapter 22: Analog Devices

25.Kendall L. Su

Analog Filters

Chapman & Hall, 1996

26.Arthur B. Williams

Electronic Filter Design Handbook

McGraw-Hill, 1981

Switched-Mode Power Supply Circuits:

27.Christophe Basso

Switch-Mode Power Supply SPICE Simulation Cookbook

McGraw-Hill, 2001

28.Steven M. Sandler

SMPS Simulation with SPICE 3

McGraw Hill, First Edition, 1997. ISBN# 0-07-913227-8

SPICE Modeling:

29.Ron Kielkowski

SPICE - Practical Device Modeling

McGraw Hill 1995. ISBN# 0-07-911524-1

30.Ron Kielkowski

Inside SPICE - Overcoming the Obstacles of Circuit Simulation

McGraw Hill 1993. ISBN# 0-07-911525-X

31.Connelly and Choi

Macromodeling with SPICE

Prentice Hall 1992. ISBN# 0-13-544941-3

RF Circuits:

27.Vendelin, Pavio, and Rhoda

Microwave Circuit Design

Wiley-Interscience, 1990

369

Battery

Schematic format

PART attribute <name>

Example

V1

VALUE attribute <value>

Examples 10

5.5V

The battery produces a constant DC voltage. It is implemented internally as the simplest form of SPICE independent voltage source. Its main virtue lies in its simplicity.

The battery provides simple constant voltage values. If you need a voltage source that is dependent on other circuit variables or time, use one of the dependent sources or the function source (NFV).

370 Chapter 22: Analog Devices

Bipolar transistor

SPICE format

Syntax

Q<name> <collector> <base> <emitter> [substrate] +<model name> [area] [OFF] [IC=<vbe>[,vce]]

Examples

Q1 5 7 9 2N3904 1 OFF IC=0.65,0.35

Q2 5 7 9 20 2N3904 2.0

Q3 C 20 OUT [SUBS] 2N3904

Schematic format

PART attribute <name>

Examples

Q1

BB1

VALUE attribute

[area] [OFF] [IC=<vbe>[,vce]]

Example

1.5 OFF IC=0.65,0.35

MODEL attribute <model name>

Example 2N2222A

The initialization, 'IC=<vbe>[,vce]', assigns initial voltages to the junctions in transient analysis if no operating point is done (or if the UIC flag is set). Area multiplies or divides parameters as shown in the model parameters table. The OFF keyword forces the BJT off for the first iteration of the operating point.

Model statement forms

.MODEL <model name> NPN ([model parameters])

.MODEL <model name> PNP ([model parameters])

.MODEL <model name> LPNP ([model parameters])

371

Examples

.MODEL Q1 NPN (IS=1E-15 BF=55 TR=.5N)

.MODEL Q2 PNP (BF=245 VAF=50 IS=1E-16)

.MODEL Q3 LPNP (BF=5 IS=1E-17)

Name

Parameter

Unit/s

 

Default Area

IS

Saturation current

A

 

1E-16

*

BF

Ideal maximum forward beta

 

 

100.0

 

NF

Forward current emission coefficient

 

 

1.00

 

VAF

Forward Early voltage

V

 

 

IKF

BF high-current roll-off corner

A

 

*

ISE

BE leakage saturation current

A

 

0.00

*

NE

BE leakage emission coefficient

 

 

1.50

 

BR

Ideal maximum reverse beta

 

 

1.00

 

NR

Reverse current emission coefficient

 

 

1.00

 

VAR

Reverse Early voltage

V

 

 

IKR

BR high-current roll-off corner

A

 

*

ISC

BC leakage saturation current

A

 

0.00

*

NC

BC leakage emission coefficient

 

 

2.00

 

NK

High current rolloff coefficient

 

 

0.50

 

ISS

Substrate pn saturation current

A

 

0.00

*

NS

Substrate pn emission coefficient

 

1.00

 

RC

Collector resistance

 

0.00

/

RE

Emitter resistance

 

0.00

/

RB

Zero-bias base resistance

 

0.00

/

IRB

Current where RB falls by half

Α

 

*

RBM

Minimum RB at high currents

 

RB

/

TF

Ideal forward transit time

S

 

0.00

 

TR

Ideal reverse transit time

S

 

0.00

 

XCJC

Fraction of BC dep. cap. to internal base

 

 

1.00

 

MJC

BC junction grading coefficient

 

 

0.33

 

VJC

BC junction built-in potential

V

 

0.75

 

CJC

BC zero-bias depletion capacitance

F

 

0.00

*

MJE

BE junction grading coefficient

 

 

0.33

 

VJE

BEjunctionbuilt-inpotential

V

 

0.75

 

CJE

BE zero-bias depletion capacitance

F

 

0.00

*

MJS

CS junction grading coefficient

 

 

0.00

 

VJS

CSjunctionbuilt-inpotential

V

 

0.75

 

CJS

CS junction zero-bias capacitance

F

 

0.00

*

VTF

Transit time dependence on VBC

V

 

 

ITF

Transit time dependence on IC

A

 

0.00

*

XTF

Transit time bias dependence coefficient

 

 

0.00

 

PTF

Excess phase

 

 

0.00

 

XTB

Temperature coefficient for betas

 

 

0.00

 

372 Chapter 22: Analog Devices

Name

Parameter

Units

Default Area

EG

Energy gap

eV

1.11

XTI

Saturation current temperature exponent

 

3.00

KF

Flicker-noise coefficient

0.00

 

AF

Flicker-noise exponent

 

1.00

FC

Forward-bias depletion coefficient

 

0.50

T_MEASURED

Measured temperature

°C

 

T_ABS

 

Absolute temperature

°C

 

T_REL_GLOBAL

Relative to current temperature

°C

 

T_REL_LOCAL

Relative to AKO temperature

°C

 

TRE1

RE linear temperature coefficient

°C-1

0.00

TRE2

RE quadratic temperature coefficient

°C-2

0.00

TRB1

RB linear temperature coefficient

°C-1

0.00

TRB2

RB quadratic temperature coefficient

°C-2

0.00

TRM1

RBM linear temperature coefficient

°C-1

0.00

TRM2

RBM quadratic temperature coefficient

°C-2

0.00

TRC1

RC linear temperature coefficient

°C-1

0.00

TRC2

RC quadratic temperature coefficient

°C-2

0.00

BJT model equations

Figure 22-1 Bipolar transistor model

Definitions

The model parameters IS, IKF, ISE, IKR, ISC, ISS, IRB, CJC, CJE, CJS, and ITF are multiplied by [area] and the model parameters RC, RE, RB, and RBM are divided by [area] prior to their use in the equations below.

T is the device operating temperature and Tnom is the temperature at which the model parameters are measured. Both are expressed in degrees Kelvin. T is set to

373

the analysis temperature from the Analysis Limits dialog box. TNOM is determined by the Global Settings TNOM value, which can be overridden with a .OPTIONS statement. T and Tnom may both be customized for each model by specifying the parameters T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL. For more details on how device operating temperatures and Tnom temperatures are calculated, see the .MODEL section of Chapter 20, "Command Statements".

The substrate node is optional and if not specified, is connected to ground. If the substrate node is specified and is an alphanumeric name, it must be enclosed in square brackets.

The model types NPN and PNP are used for vertical transistor structures and the LPNP is used for lateral PNP structures. The isolation diode DJ and capacitance CJ are connected from the substrate node to the internal collector node for NPN and PNP model types, and from the substrate node to the internal base node for the LPNP model type.

When adding new four terminal BJT components to the Component library, use NPN4 or PNP4 for the Definition field.

When a PNP4 component is placed in a schematic, the circuit is issued an LPNP model statement. If you want a vertical PNP4, change the LPNP to PNP.

VT = kT/q

VBE = Internal base to emitter voltage

VBC = Internal base to collector voltage

VCS = Internal collector to substrate voltage

In general, X(T) = Temperature adjusted value of parameter X

Temperature effects

EG(T) = 1.16 - .000702T2/(T+1108)

IS(T) = ISe((T/Tnom-1)•EG/(VT))(T/Tnom)(XTI)

ISE(T) = (ISE/(T/Tnom)XTB)e((T/Tnom-1)•EG/(NE•VT))(T/Tnom)(XTI/NE)

ISC(T) = (ISC/(T/Tnom)XTB)e((T/Tnom-1)•EG/(NC•VT))(T/Tnom)(XTI/NC)

BF(T) = BF(T/Tnom)XTB

BR(T) = BR(T/Tnom)XTB

VJE(T) = VJE(T/Tnom)-3VTln((T/Tnom))-EG(Tnom)(T/Tnom)+EG(T)

VJC(T) = VJC(T/Tnom)-3VTln((T/Tnom))-EG(Tnom)(T/Tnom)+EG(T)

VJS(T) = VJS(T/Tnom)-3VTln((T/Tnom))-EG(Tnom)(T/Tnom)+EG(T)

CJE(T) = CJE(1+MJE(.0004(T-Tnom) + (1 - VJE(T)/VJE)))

CJC(T) = CJC(1+MJC(.0004(T-Tnom) + (1 -VJC(T)/VJC)))

374 Chapter 22: Analog Devices

CJS(T) = CJS(1+MJS(.0004(T-Tnom) + (1 - VJS(T)/VJS)))

Current equations

Q1 = 1/ (1 - VBC/VAF - VBE/VAR)

Q2 = IS(T)(e(VBE/(NF•VT))-1)/IKF + IS(T)(e(VBC/(NR•VT))-1)/IKR

QB = Q1(1+(1+4Q2)0.5 ) / 2

Current source value

ICT = IS(T)(e(VBE/(NF•VT))-1)/QB - IS(T)(e(VBC/(NR•VT))-1)/QB

Base emitter diode current

IBE = ISE(T)(e(VBE/(NE•VT))-1)+IS(T)(e(VBE/(NF•VT))-1)/BF(T)

Base collector diode current

IBC = ISC(T)(e(VBC/(NC•VT))-1)+IS(T)(e(VBC/(NR•VT))-1)/QB/BR(T)

Base terminal current

IB = IBE + IBC

IB = IS(T)(e(VBE/(NF•VT))-1)/BF(T)+ISE(T)(e(VBE/(NE•VT))-1)+

IS(T)(e(VBC/(NR•VT))-1)/BR(T)+ISC(T)(e(VBC/(NC•VT))-1)

Collector terminal current

IC = IS(T)(e(VBE/(NF•VT))- e(VBC/(NR•VT)))/QB

- IS(T)(e(VBC/(NR•VT))-1)/BR(T)- ISC(T)(e(VBC/(NC•VT)) -1)

Emitter terminal current

IE = IS(T)(e(VBE/(NF•VT))-e(VBC/(NR•VT)))/QB

+IS(T)(e(VBE/(NF•VT))-1)/BF(T)+ISE(T)(e(VBE/(NE•VT))-1)

Capacitance equations

Base emitter capacitance

GBE = base emitter conductance = ð(IBE) / ð(VBE)

If VBE ≤ FCVJE(T)

CBE1 =CJE(T)(1 - VBE/VJE(T))-MJE

Else

CBE1 = CJE(T)(1 - FC)-(1+MJE) (1 - FC(1+MJE)+MJEVBE/VJE(T))

R = IS(T)(e(VBE/(NF•VT))-1)/(IS(T)(e(VBE/(NF•VT))-1)+ITF)

CBE2 = GBETF(1+XTF(3R2-2R3)e(VBC/(1.44•VTF)))

CBE = CBE1+CBE2

375

Base collector capacitances

GBC = base collector conductance = ð(IBC) / ð(VBC)

If VBC ≤ FCVJC(T)

C = CJC(T)(1 - VBC/VJC(T))-MJC

Else

C = CJC(T)(1 - FC)-(1+MJC) (1 - FC(1+MJC)+MJCVBC/VJC(T))

CJX = C(1- XCJC)

CBC = GBCTR + XCJCC

Collector substrate capacitance

If VCS ≤ 0

CJ = CJS(T)(1 - VCS/VJS(T))-MJS

Else

CJ = CJS(T)(1 - FC)-(1+MJS) (1 - FC(1+MJS)+MJSVCS/VJS(T))

Noise

RE, RB, and RC generate thermal noise currents.

Ie2 = (4 k T) / RE

Ib2 = (4 k T) / RB

Ic2 = (4 k T ) / RC

Both the collector and base currents generate frequency-dependent flicker and shot noise currents.

Ic2 = 2 q Ic + KF ICBAF / Frequency

Ib2 = 2 q Ib + KF IBEAF / Frequency

where

KF is the flicker noise coefficient AF is the flicker noise exponent

376 Chapter 22: Analog Devices

Соседние файлы в папке Micro-Cap v7.1.6
  • #
    06.06.20171.32 Кб60model.CNT
  • #
    06.06.201776.72 Кб62MODEL.HLP
  • #
    06.06.20173.72 Кб60NETHASP.INI
  • #
    06.06.2017450 б59os.dat
  • #
    06.06.2017545 б63READ.ME
  • #
    06.06.20173.31 Mб68RM.PDF
  • #
    06.06.2017226.69 Кб61setup.bmp
  • #
    06.06.201795 б59SETUP.INI
  • #
  • #
    06.06.201749 б60setup.lid
  • #
    06.06.20172.04 Mб60Standard.cmp