Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА_ЭКЗАМЕН.doc
Скачиваний:
101
Добавлен:
21.04.2017
Размер:
896.51 Кб
Скачать

35. Электрическая проводимость атмосферы. Ионосфера, ионосферные слои. Влияние ионосферы на распространение радиоволн. Нормальное электрическое поле атмосферы. Техногенное воздействие на ионосферу

Атмосфера Земли в своем составе имеет нейтральные молекулы и атомы, положительные и отрицательные ионы и свободные электроны. Вследствие содержания электрически заряженных частиц атмосфера обладает электропроводностью. К числу основных возбудителей электрически заряженных частиц в атмосфере, или основных ионизаторов атмосферы, относятся космические лучи, солнечная и земная радиации. Космические лучи на 90% состоят из протонов, около 7% ядер гелия и на долю всех остальных элементов приходится 3%. Частицы космических лучей обладают очень большой энергией (от 1 до 1012ГэВ), при взаимодействии с атомами атмосферы эти частицы порождают обильные ливни электронов и мюзонов больших энергий, которые достигают земной поверхности и проникают в глубь земной коры, и мезонов меньших энергий, которые при движении в атмосфере распадаются. Быстрые электроны также теряют свою энергию в атмосфере в результате различных механизмов взаимодействия с веществом, и в конечном итоге возникают ливни свободных заряженных частиц, обеспечивающих электрическую проводимость атмосферы. Этот вид ионизации атмосферы на уровне моря создает 2– 4 млн пар ионов в 1 м3в 1 с. С ростом высоты примерно до 18 км мощность космической ионизации увеличивается пропорционально росту потока космических лучей.

Преобладающая часть солнечной радиацииУФ- и рентгеновского диапазонов поглощается в верхних слоях атмосферы (выше 40 км). Этот процесс сопровождается ионизацией атомов атмосферы. Корпускулярное солнечное излучение также ионизирует атмосферу в пределах, сравнимых с теми, которые создаются электромагнитным излучением Солнца.

Земная радиация ионизирует атмосферу в непосредственной близости у поверхности Земли. Это происходит гл. образом за счет поступления из земной коры продуктов радиоактивного распада тяжелых элементов горных пород. Ионы образуются в приземном слое атмосферы, а затем турбулентным обменом и вертикальным движением переносятся до высоты 4-5 км. Земная радиация создает в приземном слое атмосферы над сушей около 5 млн пар ионов в 1 м3в 1 с, над поверхностью морей и океанов их концентрация несравненно меньше из-за ничтожно малого содержания радиоактивных веществ в морской воде.

В атмосфере ионы образуются также в результате ее загрязнения продуктами атомной промышленности и испытаний ядерного оружия, а также коротковолнового излучения звезд, за счет метеорных частиц и др. ионизаторов.

Наряду с ионизацией в атмосфере происходит обратный процесс – рекомбинацияэлектронов и ионов, скорость которой неодинакова на различных высотах. Это же относится и к мощности ионизаторов. Поэтому вертикальный профиль концентрации ионов и электронов в атмосфере имеет сложный характер.

Электрическая проводимость атмосферного воздуха зависит от концентрации носителей положительных и отрицательных зарядов и их подвижности. Периодические колебания концентрации носителей заряда имеют весьма сложный характер, но обычно летом их концентрация вблизи земной поверхности выше, чем зимой. В суточнолм ходе наибольшая концентрация ионов обычно наблюдается в утренние часы, наименьшая – во второй половине дня.

ИОНОСФЕРА. Если по изменению температуры можно различить 5 слоев, то по степени ионизации газов воздуха атмосфера подразделяется на 4 слоя:D,E,F1иF2. Ионизация вызвана поглощением солнечной радиации. Ультрафиолет ионизирует молекулы О2иN2. Исчезновение электронов и ионов может происходить в результате их рекомбинации, а также перехода в другой объем, расположенный по соседству с данным или значительно дальше. Поэтому электронная концентрация в данном месте зависит от скорости ионизации, от скорости рекомбинации, а также от того, какое количество свободных электронов уйдет из данного единичного объема в единицу времени. Этот последний процесс наз. дивергенцией. Как видим, природа образования ионосферы и ее поведение зависят от многих причин.

Очевидно, что движение атмосферного газа влияет на изменение электронной концентрации в ионосфере. Но существуют и другие силы, которые приводят в движение электроны и перераспределяют электронную концентрацию в ионосфере. Это в первую очередь электрические и магнитные поля.

Первоначально ионосферные слои были обнаружены в экспериментах по распространению радиоволн. Излученные вверх радиоволны коротковолнового диапазона возвращались к Земле, будучи отраженными в верхней атмосфере неким электрическим экраном. Затем было установлено, что этим экраном служит слой электронов. Там же находится и слой положительных ионов, но они из-за их относительно большой массы

Рис. 24. Влияние слоя Еионосферы на распространение радиоволн.

не влияют на распространение радиоволн. Один из таких слоев был обнаружен около высоты 300 км (эта высота меняется в зависимости от сезона, широты, времени суток и др. факторов). Это тот слой, который обозначен символом F. На высоте около 100 км был обнаружен еще один ионосферный слой, названный слоемЕ (слой Хивисайда). Этот слой подобен гигантскому зеркалу, от которого отражаются радиоволны. При этом они могут распространяться дальше, чем следовало бы ожидать, если бы они распространялись без отражения.

Затем было установлено, что ниже слоя Е также имеются свободные электроны, хотя и в меньших количествах, чем выше. Этот слой назван слоем D, и главное его влияние на распространение радиоволн заключается в том, что в нем радиоволны коротковолнового диапазона поглощаются.

Мощное воздействие электромагнитным излучением на ионосферу позволяет создать геофизическое оружие. США имеют на Аляске и в Норвегии антенные поля для высокочастотного электромагнитного воздействия на атмосферу, способного вызывать бури, разряды и т.д. В России также была одна такая установка, но зимой не слили воду из труб все полопалось.

Соседние файлы в предмете Физика