Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физика

.doc
Скачиваний:
7
Добавлен:
21.04.2017
Размер:
158.72 Кб
Скачать

КСР по физике

Упругие силы. Виды упругих деформаций. Закон Гука для деформаций растяжения, сдвигания, кручения. Диаграмма растяжения. Силы трения, Закон Кулона для сил трения.

При деформации изменяются расстояния между частицами деформированного тела. В результате этого изменяются электромагнитные (в основном кулоновские) силы взаимодействия между заряженными частицами, входящими в состав атомов. Макроскопически это проявляется в том, что при деформации тела в нем возникают силы, противодействующие внешним силам, которые вызвали деформацию. В механике эти силы, возникающие в упругих телах при небольших деформациях, называют упругими.

Любое изменение формы и размеров тела под действием приложенных внешних сил называется деформацией.

Деформации делятся на упругие и неупругие, или пластические. Деформация называется упругой, если после прекращения действия внешней силы тело полностью восстанавливает первоначальные размеры и форму.

В природе нет абсолютно упругих или абсолютно неупругих тел.

При сравнительно небольших деформациях многие твердые тела (прежде всего металлические) ведут себя, как тела упругие.

Виды упругих деформаций.

Растяжение или сжатие Сдвиг Изгиб Кручение

В большинстве случаев наблюдаемая деформация представляет собой несколько деформаций одновременно. В конечном счёте, однако, любую деформацию можно свести к 2 наиболее простым: растяжению (или сжатию), сдвигу (Сдвигом называют такую деформацию твердого тела, при которой все его плоские слои, параллельные некоторой плоскости сдвига, не искривляясь и не изменяясь в размерах, смещаются параллельно друг другу).

ЗАКОН ГУКА, связь между НАПРЯЖЕНИЕМ и ДЕФОРМАЦИЕЙ в упругом материале при его растяжении. Согласно этому закону, напряжение (сила на единицу площади) пропорционально деформации (изменению в габаритах). Закон приблизителен и применим в ограниченном диапазоне. Для тонкого растяжимого стержня закон Гука имеет вид: . Здесь сила натяжения стержня, — его удлинение, а называется коэффициентом упругости (или жёсткостью). Или может записываться так ()

Для деформации растяжения закон Гука запишется: σ=Е×ε.

Для деформации сдвига закон Гука запишется: γ=∆s/h

Для деформации кручения:  

Связь между деформацией тела и возникающим в нем напряжением графически изображается в виде диаграммы растяжения.

Диаграмма растяжения образца позволяет оценить поведение материала образца в упругой и упругопластической стадиях деформирования, определить механические характеристики материала. Диаграмма растяжения материала зависит от его структуры, условий испытаний (температуры, скорости деформирования).

СИЛА ТРЕНИЯ.

Тре́ние — процесс взаимодействия твёрдых тел при их относительном движении (смещении) либо при движении твёрдого тела в газообразной или жидкой среде.

Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения;

Трение качениямомент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого и противодействующий вращению движущегося тела;

трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Она действует в направлении, противоположном направлению возможного движения.

ЗАКОН КУЛОНА.Сила трения скольжения F пропорциональна силе N нормального давления, с которой одно тело действует на другое. F=N×f где f- коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

Потенциальная энергия поднятого над Землей тела, Потенциальная энергия упруго деформированного тела

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Физический смысл потенциальной энергии взаимодействия тела с Землей:

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Тогда физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Законы сохранения и превращения энергии в механике - фундаментальные физические законы, согласно которым при определенных условиях некоторые физические величины не изменяются с течением времени.

Закон сохранения энергии — основной закон природы, заключающийся в том, что энергия изолированной (замкнутой) системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии.

На законе превращения энергии основана теория вечного двигателя.

Динамика вращательного движения:

Виды движения:

Поступательное движение — это механическое движение твёрдого тела, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. Поступательное движение противопоставляется вращательному.

Враща́тельное движе́ние — вид движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

Также для твёрдого тела выделяют плоское движение — движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела положением любых двух точек.

Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело. , где  — сила, действующая на частицу, а  — радиус-вектор частицы.

Вращением твер­дого тела вокруг неподвижной оси называется такое движение, при котором все его точки, лежащие на некоторой прямой, называемой осью вращения, все время остаются неподвижными.

При вращении угол поворота изменяется в зависимости от времени. Равенство:

является уравнением вращения тела вокруг неподвижной оси. Оно позволяет определить положение тела в любой момент времени. Угол в равенстве выражается в радианах.

Момент инерции — скалярная физическая величина, характеризующая распределение масс в теле, равная сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением ее радиус-вектора и импульса:

где — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчета начала отсчёта, — импульс частицы.

Момент инерции твёрдого тела вычисляется с помощью тройного интеграла по объёму тела от произведения плотности тела на квадрат расстояния переменной точки до оси.

Закон сохранения момента импульса (закон сохранения углового момента): векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Производная момента импульса по времени есть момент силы:

Кинетическая энергия - физ. энергия механической системы, зависящая от скоростей движения её точек в заданной инерциальной системе отсчёта. Кинетическая энергия тела является скалярной величиной, равной половине произведения массы тела на квадрат скорости его поступательного движения. Основными динамическими характеристиками Вращательное движение тела являются его кинетический момент относительно оси вращения Kz = Izω (см. Момент количества движения) и кинетическая энергия Т = 1/2 Izω2, где Izмомент инерции тела относительно оси вращения. Закон вращения определяется из основного уравнения Iz ε = Mz, где Mz вращающий момент.

Центробежные силы инерции (ЦБСИ) есть неизбежный спутник вращения массы относительно центра вращения. В качестве центра вращения может служить более массивное тело по сравнению с вращающимся рабочим телом. В этом случае вращение этих масс вокруг общего центра масс можно не учитывать и считать, что менее массивное тело вращается относительно неподвижного массивного. Может быть другой случай, когда две равные массы (гантель), вращаются вокруг их общего центра масс. При этом противоположно направленные ЦБСИ уравновешивают друг друга и никакой массы в центре вращения не требуется.

Си́ла Кориоли́са (по имени французского учёного Гюстава Гаспара Кориолиса, впервые ее описавшего) — одна из сил инерции, существующая в неинерциальной (вращающейся) системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения. Ускорение Кориолиса было получено Кориолисом. Причина появления силы Кориолиса — в кориолисовом (поворотном) ускорении. Для того, чтобы тело двигалось с кориолисовым ускорением, необходимо приложение силы к телу, равной F = ma, где a — кориолисово ускорение.

В северном полушарии сила Кориолиса направлена вправо от движения, поэтому правые берега рек в Северном полушарии более крутые — их подмывает вода под действием этой силы . В Южном полушарии всё происходит наоборот. Сила Кориолиса ответственна также и за вращение циклонов и антициклонов

2 Термодинамика и молекулярная физика.

Применения первого начала термодинамики к изопроцессам идеального газа

Изохорический процесс (V = const). Работа в этом процессе, как следует из (4.16), равна нулю. Процесс сводится к теплообмену системы с окружающей средой. Первый закон термодинамики при этом условии принимает вид: Q = ΔU.

Изобарический процесс (Р = const). На основании определения теплоемкости (4.20) количество теплоты Q, подведенное к системе в изобарном процессе, для одного моля идеального газа равно:

Изотермический процесс. При изотермическом процессе температура системы не изменяется (ΔТ = 0), а, следовательно, ее внутренняя энергия, являясь для идеального газа только функцией температуры, остается постоянной, то есть ее изменение ΔU = 0. Это значит, что сообщаемое системе количество теплоты идет на совершение работы. Адиабатический процесс. Адиабатический процесс – процесс, идущий без теплообмена с окружающей средой. Это значит, что система должна быть теплоизолирована, либо процесс должен протекать так быстро, что за время процесса не происходит теплообмена системы с окружающей средой. Условие адиабатичности процесса означает, что Q = 0.

Уравнение первого закона термодинамики для адиабатического процесса принимает вид: .

Обратимые и необратимые процессы

Обратимыми называются такие процессы, для которых при прямом и обратном изменении внешних параметров система будет проходить через одни и те же промежуточные состояния.

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину. Обратимые процессы дают наибольшую работу. Большую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др.

и

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадает соответственно с максимальной и минимальной температурами цикла Карно.

Цикл Карно назван в честь французского физика Сади Карно, который впервые его исследовал в 1824 году.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Можно показать, что КПД любой тепловой машины, работающей по циклу, отличному от цикла Карно, будет меньше КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника.

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что невозможно всю внутреннюю энергию системы превратить в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Тепловой баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля — атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация, поэтому распределение и соотношение составляющих Т. б. характеризуют её преобразования в этих оболочках.

Из недр Земли постоянно выделяется тепловой поток, а так тепло может передаваться только от более горячего вещества к более холодному, то температура внутри планеты должна быть выше, чем на ее поверхности. Глубинное бурение показало что, температура с глубиной увеличивается на 20 градусов на каждый километр и меняется от места к месту. Внутреннее строение Земли. Установить внутреннее строение Земли удалось сейсмическим методом. Суть его заключается в том, что при взрыве колебания в Земле идут с разной скоростью, в зависимости от состава пород и плотности вещества. В результате было установлены внутренние оболочки нашей планеты: земная кора, мантия, ядро. Верхняя оболочка Земли или земная кора - самая неоднородная и сложно устроенная. Под материками она состоит из трех слоев: осадочного, гранитного, базальтового. Мощность земной коры под материками составляет от 20 до 80 км. Под океанами осадочный слой имеет толщину всего 500 метров, гранитный слой под океанами отсутствует практически повсеместно, а базальтовый слой имеет мощность около 5 км. Между земной корой и мантией располагается промежуточный слой, который называется граница Мохоровичича, в честь сербского физика Мохоровичича, (открывшего его в 1909 году). Толщина земной коры (внешней оболочки) изменяется от нескольких километров (в океанических областях) до нескольких десятков километров (в горных районах материков).

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются: - радиационный баланс; - затрата тепла на испарение; - турбулентный теплообмен между поверхностью океана и атмосферой; - вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и - горизонтальная океаническая адвекция.

15

Соседние файлы в предмете Физика