
- •1 Термохимические преобразования минеральных соединений твердого топлива.
- •2 Процессы трансформации минеральных веществ в слое золовых отложений.
- •3 Понятие золового износа.
- •4 Факторы, влияющие на протекание золового износа.
- •5 Классификация натрубных отложений в зависимости от механизма их образования и последующей трансформации.
- •6 Абразивный износ конвективных поверхностей нагрева.
- •7 Теплофизические факторы, влияющие на осаждение золовых частиц на трубах поверхностей нагрева и развитие золового слоя.
- •8 Прогнозирование золошлакового загрязнения поверхностей нагрева при сжигании твердого топлива.
- •9 Методы снижения наружного загрязнения поверхностей нагрева при эксплуатации котельных установок.
- •10 Низкотемпературная сернокислотная коррозия по газовому тракту котла.
- •11 Наружная коррозия экранных труб поровых котлов.
- •12 Конденсация паров серной кислоты в поверхностях нагрева, газоходах и в дымовых трубах котельных установок.
- •13 Высокотемпературная ванадиевая коррозия.
- •14 Критическая конденсация паров пятиокиси ванадия.
- •15 Что такое «температура точки росы». Каковы ее значения для малосернистых и сернистых топлив.
- •16 Перечислите способы, позволяющие снизить или исключить низкотемпературную коррозию воздухоподогревателей.
- •17 Низкотемпературная сернистая коррозия. Методы ее предотвращения.
- •18 Физико-химическая сущность сернокислотной коррозии и методы борьбы с ней.
- •19 Защита низкотемпературных поверхностей от коррозии.
- •20 Перечислите физико-химические процессы превращения компонентов минеральной части топлива при горении.
- •21 Назовите процессы, характеризуемые понятием «кризис кипения» первого рода.
- •22 Успехи и задачи развития теории коррозии.
- •23 Обозначьте условия теплообмена на стенке прямолинейной части трубы парового котла.
- •24 Назовите особенности теплообмена при докритическом давлении водного теплоносителя.
- •25 Назовите особенности теплообмена при сверхкритическом давлении водного теплоносителя.
- •26 Назовите особенности температурного режима горизонтальных труб, криволинейных труб и каналов и газоплотных экранов.
- •27 Какое влияние оказывают внутритрубные отложения на температурный режим обогреваемых труб парового котла?
- •28 Расскажите о материальном балансе примесей в пароводяном тракте парового котла.
- •29 Назовите причины образования отложений примесей в пароводяном тракте прямоточного котла.
- •30 Назовите причины образования отложений примесей в пароводяном тракте барабанного котла.
- •31 С какой целью удаляют примеси с непрерывной продувкой воды из водяного тракта барабанного котла?
- •32 Что подразумевается под понятием «водно-химический режим» и каковы нормы качества пара и питательной воды?
- •33 Назовите особенности водно-химического режима прямоточных котлов.
- •34 Назовите особенности водно-химического режима барабанных котлов.
- •35 Как влияют внутрибарабанные устройства на качество котловой воды и насыщенного пара?
- •36 Схема трехступенчатого испарения. Назначение, конструкция и область применения выносных циклонов (на примере 3-х ступенчатого испарения).
- •37 Ступенчатое испарение в барабане котла и баланс солей.
- •38 Почему схема ступенчатого испарения с выносным циклоном лучше, чем при установке перегородки внутри барабана.
- •39 Гидразино-аммиачный водный режим прямоточных котлов, его достоинства и недостатки.
- •40 Водно-химические режимы паровых котлов.
- •41 Промывка пара в слое чистой воды.
- •42 Водно-химический режим барабанных котлов.
- •43 Водно-химический режим прямоточных котлов.
- •44 В чем смысл организации ступенчатого испарения в барабане котла.
- •45 Кризисы кипения и их влияние на накипеобразование.
- •46 Источники примесей в пароводяной тракт котла.
- •47 Основные закономерности образования отложений в пароводяном тракте.
- •48 Закономерности капельного и избирательного уноса.
- •49 Классификация и состав внутренних отложений в пароперегревателях и испарительных поверхностях нагрева.
- •50 Закономерности образования щелочноземельных накипей.
- •51 Закономерности образования железоокисных, железофосфатных накипей.
- •52 Закономерности образования отложений легкорастворимых солей и медных накипей.
- •53 Связь процессов накипеобразования с теплофизическими процессами при испарении.
- •54 Что такое коррозия и виды коррозионных разрушений.
- •55 Когда протекает химическая коррозия и при каких условиях становится возможной электрохимическая коррозия металлов?
- •56 Перечислить внутренние и внешние факторы, влияющие на скорость коррозии.
- •57 Где и при каких условиях протекает коррозия?
- •58 Классификация отложений. Факторы, влияющие на интенсивность образования отложений.
- •59 Что такое межкристаллитная коррозия?
- •60 Чем она опасна в сравнении с общей коррозией?
- •61 Классификация внутритрубных отложений, условия их образования.
- •62 Факторы, влияющие на интенсивность накипеобразования?
- •63 Когда протекает углекислотная коррозия.
- •64 Какие участки пароводяного тракта наиболее подвержены углекислотной коррозии?
- •65 Что влияет на скорость образования продуктов коррозии конструкционных материалов?
- •66 Что влияет на распределение примесей в перегретом паре?
- •67 Различается ли количественный и качественный состав отложений?
- •68 Назовите причины образования отложений примесей в пароводяном тракте барабанного котла.
- •7 Теплофизические факторы, влияющие на осаждение золовых частиц на трубах поверхностей нагрева и развитие золового слоя.
- •4 Факторы, влияющие на протекание золового износа.
11 Наружная коррозия экранных труб поровых котлов.
Этот вид коррозии возникает при сжигании топлив с малым выходом летучих и сернистого мазута и связан с образованием вблизи поверхности труб экранов заметной концентрации сероводорода H2S.Коррозия развивается интенсивно на уровне расположения горелок в зоне экранов, которые непосредственно омываются расширяющейся струёй по выходе из горелки. Скорость коррозионного разрушения металла лобовой части труб при неблагоприятных условиях может составить 3-4 мм/год, т.е. трубы экранов в этой зоне выходят из строя менее чем через год. Износ труб имеет вид «спиливания» лобовой части стенки трубы.
Неблагоприятными условиями является локальное снижение коэффициента избытка воздуха в пылевоздушной струе αлок<0,7 при быстром росте температуры струи по мере удаления ее от амбразуры горелки. В процессе выхода летучих веществ из частиц топлива в газовой среде накапливаются горючие вещества H2,СО,СН4. При высокой температуре в газообразные соединения переходят 70-80% Sp топлива. Нехватка кислорода приводит к тому, что при наличии свободных H2 и S2 в газовой среде протекает реакция S2+2 H2→2 H2S
Даже при незначительных объемных концентрациях H2S у поверхности экранов(0,04-0,07%) скорость коррозии металла возрастет в 5-10 раз по сравнению с допустимой при содержании H2S=0,01%.
Для исключения коррозионного разрушения экранов необходимо обеспечить равномерную раздачу топлива и воздуха по горелкам так, что бы в каждой из них постоянно имел место избыток воздуха больше единицы. Кроме того, следует исключить прямой удар пылевоздушной струи из горелки в боковой экран на близком расстоянии от амбразуры. Для этого отодвигают крайние горелки от на большее расстояние и развертывают их оси на 5-10 градусов к центру топки.
12 Конденсация паров серной кислоты в поверхностях нагрева, газоходах и в дымовых трубах котельных установок.
К этому виду коррозии относят разрушение металла поверхностей воздухоподогревателей, находящихся в области наиболее низких температур как газов, так и рабочей среды (воздуха).
Определяющим фактором интенсивной низкотемпературной коррозии является наличие в потоке дымовых газов паров серной кислоты H2SO4. При горении серы топлива в зоне ядра факела образуется диоксид серы SO2. В дальнейшем при наличии некоторого избытка воздуха SO2 частично доокисляется в SO3 атомарным кислородом О”, образующимся в высокотемпературной зоне факела и избыточным количеством молекулярного кислорода в зоне горения. Трехокись серы SO3 может разлагаться, но только при весьма высоких температурах. Общий процесс образования и разложения SO3 в зоне факела можно выразить следующим образом SO2+ О” → SO3→ SO2+1/2О2. В итоге на границе ядра факела образуется заметная концентрация SO3, которая после завершения горения снижается в результате постепенного разложения SO3 в зоне высоких температур газов.
Однако по мере снижения температуры газов этот процесс тормозится и практически прекращается при Vг=1200-12500С. Чем быстрее происходит охлаждение газов, тем выше будет остаточная концентрация SO3.
При дальнейшем прохождении газами конвективных поверхностей нагрева может происходить увеличение концентрации SO3 за счет окисления SO2 в потоке газов остаточным содержания кислорода. Катализаторами процесса доокисления SO2 в SO3 являются отложения на поверхностнях нагрева, в том числе сульфаты железа и сажевые частицы. В зоне температур газов ниже 5000С начинается образование паров серной кислоты за счет реакции SO3 с водяными парами, находящимися в газовом потоке. Этот процесс завершается при температуре около 2500С. Коррозия поверхности нагрева может начаться при условии, если температура стенки и пристенного пограничного слоя окажется ниже температуры конденсации паров влаги или паров серной кислоты, соответствующей их парциальному давлению в газах.
Температура, при которой начинается конденсация влаги на поверхности, называется термодинамической температурой росы,точка росы. При наличии в потоке газов паров серной кислоты температура конденсации(сернокислотная точка росы tsp значительно увеличивается. С увеличением содержания серы в топливе и избытка воздуха αt возрастает образование SO3 в потоке газов, что ведет к росту температуры росы. Скорость коррозии пропорциональна скорости конденсации паров влаги и серной кислоты(она возрастает с уменьшением tст).Интенсивность зависит от процентного содержания H2SO4 в конденсирующейся пленке на поверхности металла.
Для исключения низкотемпературной коррозии необходимо иметь tст≥tsp+(10-150) C, но это оправдано лишь при сжигании малосернистых мазутов и сернистых твердых топлив, у которых tsp не превышает 1100С.