Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
sopromat_otvety.docx
Скачиваний:
210
Добавлен:
14.03.2016
Размер:
879 Кб
Скачать

8.Главные оси инерции и главный момент инерции.

Главные оси инерции и главные моменты инерции.

При изменении угла величины Ix1, Iy1 и Ix1y1 изменяются. Найдем значение угла, при котором Ix1 и Iy1имеют экстремальные значения; для этого возьмем от Ix1 или Iy1 первую производную по и преравняем ее нулю:илиоткуда(1.28)

Эта формула определяет положение двух осей, относительно одной из которых осевой момент инерции максимален, а относительно другой - минемален.

Такие оси называют главными. Моменты инерции относительно главных осей называются главными моментами инерции.

Значения главных моментов инерции найдем из формул (1.23) и (1.24), подставив в них из формулы (1.28), при этом используем известные формулы тригонометрии для функций двойных углов.

После преобразований получим следующую формулу для определения главных моментов инерции:  (1.29)

Исследуя вторую производную можно установить, что для данного случая (Ix < Iy) максимальный момент инерции Imax имеет место относительно главной оси, повернутой на угол по отношению к оси х, а минимальный момент инерции - относительно другой, перпендикулярной оси. В большинстве случаев в этом исследовании нет надобности, так как по конфигурации сечений видно, какая из главных осей соответствует максимуму момента инерции.

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями.

Во многих случаях удается сразу определить положение главных центральных осей. Если фигура имеет ось симметрии, то она является одной из главных центральных осей, вторая проходит через центр тяжести сечения перпендикулярно первой. Сказанное следует из того обстоятельства, что относительно оси симметрии и любой оси, ей перпендикулярной, центробежный момент инерции равен нулю.

В случае если два главных центральных момента инерции сечения равны между собой, то у этого сечения любая центральная ось является главной, и все главные центральные моменты инерции одинаковы (круг, квадрат, шестиугольник, равносторонний шестиугольник).

9.Основные геометрические характеристики сечений

Здесь: C - центр тяжести плоских сечений;

A - площадь сечения;

I, Iy - осевые моменты инерции сечения относительно главных осей;

IxI , IyI - осевые моменты инерции относительно вспомогательных осей;

Ip - полярный момент инерции сечения;

W, Wy - осевые моменты сопротивления;

Wp - полярный момент сопротивления

Прямоугольное сечение

Сечение равнобедренный треугольник

10.Основные виды сил, действующие на тело. Момент силы относительно центра. Свойства момента сил.

При рас­смот­ре­нии ме­ха­ни­че­ских задач боль­шин­ство сил, дей­ству­ю­щих на тела, можно от­не­сти к трем ос­нов­ным раз­но­вид­но­стям:

- сила все­мир­но­го тя­го­те­ния;

- сила тре­ния;

- сила упру­го­сти.

Все окру­жа­ю­щие нас тела при­тя­ги­ва­ют­ся к Земле, это обу­слов­ле­но дей­стви­ем сил все­мир­но­го тя­го­те­ния. Если мы будем пре­не­бре­гать со­про­тив­ле­ни­ем воз­ду­ха, то мы уже знаем, что все тела па­да­ют на Землю с оди­на­ко­вым уско­ре­ни­ем – уско­ре­ни­ем сво­бод­но­го па­де­ния.

Как и вся­кий пред­мет, тело, под­ве­шен­ное на пру­жине, стре­мит­ся упасть вниз из-за при­тя­же­ния Земли, но, когда пру­жи­на рас­тя­нет­ся до неко­то­рой длины, тело оста­нав­ли­ва­ет­ся, то есть при­хо­дит в со­сто­я­ние ме­ха­ни­че­ско­го рав­но­ве­сия. Мы уже знаем, что ме­ха­ни­че­ское рав­но­ве­сие на­сту­па­ет, когда сумма сил, дей­ству­ю­щих на тело, равна нулю. Это озна­ча­ет, что сила тя­же­сти, дей­ству­ю­щая на груз, долж­на урав­но­ве­сить­ся с неко­то­рой силой, дей­ству­ю­щей со сто­ро­ны пру­жи­ны. Эта сила, на­прав­лен­ная про­тив силы тя­же­сти и дей­ству­ю­щая со сто­ро­ны пру­жи­ны, на­зы­ва­ет­ся силой упру­го­сти.

Прой­дя неко­то­рое рас­сто­я­ние, тело оста­нав­ли­ва­ет­ся, ско­рость тела умень­ша­ет­ся от на­чаль­но­го зна­че­ния до нуля, то есть уско­ре­ние тела – ве­ли­чи­на от­ри­ца­тель­ная. Сле­до­ва­тель­но, на тело со сто­ро­ны по­верх­но­сти дей­ству­ет сила, ко­то­рая стре­мит­ся оста­но­вить это тело, то есть дей­ству­ет про­тив его ско­ро­сти. Эта сила на­зы­ва­ет­ся силой тре­ния.  

Момент силы относительно центра (точки).

    Моментом силы F относительно центра (точки) О называется вектор mo(F) равный векторному произведению радиуса вектора r,  проведенного из центра О в точку А приложения силы, на вектор силы F:

mo(F) = rF.

    Вектор mo(F) приложен в точке О и направлен  плоскости, проходящей через центр О и силу F, в ту сторону, откуда сила видна стремящейся повернуть тело вокруг центра О против хода часовой стрелки.

    Модуль mo(F) равен произведению модуля силы F на плечо h:

 mo(F) = Fh,

где плечо h  перпендикуляр, опущенный из центра О на линию действия силы F.

    Момент mo(F) характеризует вращательный эффект силы F относительно центра (точки) О.

    Свойства момента силы:

    1. Момент силы относительно центра не изменяется при переносе силы вдоль линии ее действия в любую точку;

    2. Если линия действия силы проходит через центр О (h = 0), то момент силы относительно центра О равен нулю.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]