Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
sopromat_otvety.docx
Скачиваний:
210
Добавлен:
14.03.2016
Размер:
879 Кб
Скачать

3.Статика. Основные положения

Статикой называется раздел теоретической механики, в котором излагается общее учение о силах и изучаются условия равновесия тел, находящихся под действием сил. 

В основе статики лежат некоторые основные положения (аксиомы), которые являются обобщением многовекового производственного опыта человечества и теоретических исследований.

Аксиома 1. Если на свободное абсолютно твёрдое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по величине и направлены вдоль одной прямой в противоположные стороны (рис.1.2).

  Рис.1.2

Аксиома 2. Действие данной системы сил на абсолютно твёрдое тело не изменится, если к ней прибавить или от неё отнять уравновешенную систему сил. Если  , то  . Следствие: действие силы на абсолютно твёрдое тело не изменится, если перенести точку приложения силы вдоль её линии действия в любую другую точку тела. Пусть на тело действует приложенная в точке А сила . Выберем на линии действия этой силы произвольную точку В, и приложим к ней уравновешенные силы и , причём ,  . Так как силы  и образуют уравновешенную систему сил, то согласно второй аксиоме статики их  можно отбросить. В результате на тело будет действовать только одна сила , равная , но приложенная в точке В (рис.1.3).

Рис.1.3

Аксиома 3. Две силы, приложенные к твёрдому телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах как на сторонах. Вектор , равный диагонали параллелограмма, построенного на векторах  и , называется геометрической суммой векторов и (рис.1.4).   

Рис.1.4

Аксиома 4. Закон равенства действия и противодействия. При всяком действии одного тела на другое имеет место такое же по величине, но противоположное по направлению противодействие (рис.1.5).

  Рис.1.5

Аксиома 5. Принцип отвердевания. Равновесие изменяемого (деформируемого) тела, находящегося под действи-ем данной системы сил, не нарушится, если тело считать отвердевшим, т.е. абсолютно твёрдым.

4.Геометрические характеристики фигур. Статический момент. Центробежный момент инерции, полярный момент инерции (основные понятия).

Результат расчетов зависит не только от площади сечения, поэтому при решении задач по сопромату не обойтись без определения геометрических характеристик фигур: статических, осевых, полярного и центробежного моментов инерции. Обязательно необходимо уметь определять положение центра тяжести сечения (от положения центра тяжести зависят перечисленные геометрические характеристики). К дополнению к геометрическим характеристикам простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольников, круга, полукруга. Указаны центр тяжести и положение главных центральных осей, и определены относительно них геометрические характеристики при условии, что материал балки однородный.

Геометрические характеристики прямоугольника и квадрата

Осевые моменты инерции прямоугольника (квадрата)

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Осевые моменты инерции прямоугольного треугольника

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА

Осевые моменты инерции равнобедренного треугольника

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРУГА

Осевые моменты инерции круга

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОЛУКРУГА

Осевые моменты инерции полукруга

Статический момент

Рассмотрим поперечное сечение стержня площадью F. Проведем через произвольную точку О оси координат x и y. Выделим элемент площади с координатами x и y (рис. 4.1).

Введем понятие статического момента инерции относительно оси - величину, равную произведению элемента площади () на расстояние (обозначено буквой y) до оси x:

.

Аналогично статический момент инерции относительно оси y равен:

.

Просуммировав такие произведения по площади F, получим статический момент инерции всей фигуры относительно осей x и y:

.

Статический момент инерции фигуры относительно оси измеряется в единицах длины в кубе (см3), и может быть положительным, отрицательным и равным нулю.

Пусть –координаты центра тяжести фигуры. Продолжая аналогию с моментом силы, можно записать следующие выражения:

.

Таким образом, моментом (статическим моментом) площади фигуры относительно оси называется произведение площади на расстояние от ее центра тяжести до оси.

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системыкоординат называются следующие величины:

где xy и z — координаты малого элемента тела объёмом dVплотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxzодновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти осивзаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции,проведённых в произвольной точке O тела, называются главными моментами инерции тела.

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осямиинерции тела, а моменты инерции относительно этих осей — его главными центральными моментамиинерцииОсь симметрии однородного тела всегда является одной из его главных центральных осейинерции.

Поля́рный моме́нт ине́рции — интегральная сумма произведений площадей элементарных площадок dA на квадрат расстояния их от полюса — ρ2 (в полярной системе координат), взятая по всей площади сечения. То есть:

Эта величина используется для прогнозирования способности объекта оказывать сопротивлениекручению. Она имеет размерность единиц длины в четвёртой степени (м4, см4) и может быть лишь положительной.

Для площади сечения, имеющей форму круга радиусом r полярный момент инерции равен:

Если совместить начало декартовой прямоугольной системы координат 0 с полюсом полярной системы (см. рис.), то

потому что .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]