Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хьюз Камерон. Параллельное и распределенное программирование на С++ - royallib.ru.doc
Скачиваний:
117
Добавлен:
11.03.2016
Размер:
1.97 Mб
Скачать

Реализация модели «классной доски» с помощью corba-объектов

Вспомните, что CORBA-объект (см. главу 8) является независимым от платформы распределенным объектом. К CORBA -объектам могут получать доступ процессы, выполняющиеся на одном или на разных компьютерах, подключенных к сети. Это делает CORBA-объекты кандидатами для использования в PVM-средах, когда программа делится на ряд процессов, которые могут (или не могут) выполняться на одном и том же компьютере. Обычно PVM-среда используется для передачи сообщений при вторичной роли общей памяти (если она вообще существует). Введение понятия разделяемого и доступного по сети объекта существенно усиливает вычислительные мощности PVM-среды. Следует иметь в виду, что с помощью CORBA-объектов можно смоделировать все, что позволяют смоделировать не распределенные объекты. Это означает, что PVM-задачи, которые имеют совместный доступ к CORBA-объектам, могут получать доступ к контейнерным объектам, объектам оболочки, шаблонов, доменов и другим видам вспомогательных объектов. В данном случае мы хотели бы, чтобы PVM-задачи имели доступ к объектам «классной доски». Поэтому модель передачи сообщений мы дополняем совместным доступом к сложным объектам. Помимо PVM-задач, получающих доступ к распределенным CORBA-объектам, к ним также могут обращаться задачи, порожденные функциями posix_spawn() или fork-exec. Эти задачи выполняются в отдельных адресных пространствах одного и того же компьютера, но могут, тем не менее, связываться с CORBA-объектами, которые расположены либо на том же, либо на другом компьютере. Поэтому, несмотря на то что все задачи, созданные с помощью функций posix_spawn () или fork-exec, должны размещаться на одном компьютере, CORBA-объекты могут располагаться на любом компьютере.

Пример использования corba-объекта «классной доски»

Чтобы продемонстрировать наше представление о CORBA-ориентированной «классной доске», рассмотрим ее реализацию, предложенную разработчиками из компании Ctest Laboratories. И хотя полное описание этого варианта выходит за рамки нашей книги, мы все же остановимся на самых важных аспектах «классной доски» и источников знаний, имеющих отношение к нашему архитектурному подхолу к параллельному программированию. «Классная доска» реализует услуги программно-ориентированного консультанта по составлению расписания учебных курсов. «Классная доска» решает задачи планирования учебных курсов для студента типичного колледжа. Студенты часто сталкиваются с проблемой «неудобного» расписания занятий. Во время регистрации курсов всегда существует конкуренция за места в аудиториях. В какой-то момент важные для студента курсы попросту «закрываются». Ведь не зря существует печально известное правило, соответствующее дисциплине обслуживания очереди: «первым пришел — первым обслужен». Поэтому во время регистрации, когда десятки тысяч студентов пытаются записаться на ограниченное количество курсов, важным фактором выступает своевременность. Студент желает пройти курсы, которые дают право на получение диплома. В идеале эти курсы должны быть разнесены во времени. Кроме того, студент хотел бы поддерживать определенную учебную нагрузку и иметь свободное время для домашних и факультативных занятий.

Проблема состоит в том, что, когда студент готов взять выбранный им курс, прием на него может уже оказаться закрытым, и вместо него ему предлагаются другие курсы, которые его интересуют в меньшей степени. Курсы-заменители увеличивают стоимость и продолжительность обучения студента в колледже, что с точки зрения студента является негативным фактором. Но если курсы-заменители отвечают «посторонним» интересам студента (имеются в виду хобби или перспективные цели), то такие курсы-заменители могут оказаться допустимыми. Кроме того, существует ряд факультативных кусов, которые могут также давать право для «выхода на диплом». Студент хотел бы получить оптимальный набор курсов, который бы позволил ему в запланированные сроки (или досрочно) претендовать на диплом, оставаясь при этом в рамках намеченного бюджета с максимальной гибкостью участвуя в учебном процессе. Для решения этой задачи студент использует работающую в реальном масштабе времени программу составления расписания учебных курсов, основанную на технологии «классной доски».

Важно отметить, что «классная доска» имеет доступ реального времени к академической характеристике студента и текущим курсам (с открытым или закрытым приемом) в любой момент периода регистрации. Кроме того, «классная доска» имеет доступ к дипломному плану студента, академическим требованиям для реализации этого плана, расписанию «готовности» студента посещать занятия, данным о его целях и предпочтениях и т.д. Все эти элементы моделируются с помощью С++- и CORBA-классов и образуют компоненты «классной доски». Для упрощения нашего примера мы рассмотрим только следующие четыре источника знаний:

• консультант по общеобразовательным курсам;

• консультант по основным курсам;

• консультант по факультативным курсам;

• консультант по непрофилирующим курсам.

Итак, рассмотрим фрагмент CORBA-интерфейса «классной доски».

// Листинг 13.1. CORBA-объявления, необходимые для нашего // класса «классной доски»

typedef sequence<long> courses;

interface black_board{

//. . .

void suggestionsForMajor(in courses Major);

void suggestionsForMinor(in courses Minor);

void suggestionsForGeneral(in courses General);

void suggestionsForElectives(in courses Electives);

courses currentDegreePlan();

courses suggestedSchedule();

//. . .

};

Главная цель интерфейса black_board — обеспечить доступ для чтения и записи со стороны источников знаний. В данном случае при разделении «классной доски» необходимо предусмотреть сегменты для каждого источника знаний. 23Это позволяет источникам знаний получать доступ к «классной доске» посредством CRCW-стратегии. Другими словами, несколько типов источников знаний могут получить доступ к «классной доске» одновременно, но источники знаний одинакового типа должны быть ограничены применением CREW-стратегии. Любой метод или функция-член, с помощью которого источники знаний будут получать доступ к»классной доске», должен быть определен в интерфейсном классе black_board. Класс courses объявляется с использованием типа CORBA, и поэтому его можно применять в качестве параметра и значений, возвращаемых методами при взаимодействии между источниками знаний и «классной доской». Поэтому эти объявления класса black_board

courses Minor; courses Major;

будут использованы для представления информации, которая либо записывается на «классную доску», либо считывается с нее. Тип courses — это синоним для CORBA-типа sequence<long>, полученный в результате использования typedef-объявления. Тип sequence<long> в CORBA представляет собой вектор (массив) переменной длины. Это означает, что переменные типа courses используются для хранения массива элементов типа long. Каждый long-элемент предназначен для хранения кода курса. Каждый код курса представляет курс обучения, предлагаемый в колледже. Поскольку С++ не имеет типа sequence, то объявление sequence<long> преобразуется в С++-класс. Этот класс имеет такое же имя, как sequence<long> typedef: courses. Процесс преобразования из CORBA-типов в типы С++ происходит во время IDL-компиляции при построении CORBA-приложения. IDL-компилятор должен перевести объявление sequence<long> в С++-код, С++-класс courses должен автоматически включать перечисленные ниже функции.

allocbuf() freebuf() get_buffer() length() operator[] release() replace() maximum ()

Источники знаний будут взаимодействовать с «классной доской» с помощью этих методов. Объявление sequence<long> «невидимо» для источников знаний; они «видят» только класс courses. Поскольку CORBA поддерживает такие типы данных, как структуры (struct), классы, массивы и последовательности, источники знаний могут обмениваться с «классной доской» высокоорганизованными объектами. Это позволяет программисту поддерживать объектно-ориентированное представление при обмене данными с «классной доской». Поддержка объектно-ориентированного представления (где это необходимо) является важным фактором понижения уровня сложности параллельного программирования. Способность просто считывать с «классной доски» и записывать на нее сложные объекты или даже иерархии объектов упрощает программирование в параллельных приложениях. Нет необходимости выполнять преобразование из примитивных типов данных в сложные объекты: можно совершать обмен сложными объектами напрямую.