Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хьюз Камерон. Параллельное и распределенное программирование на С++ - royallib.ru.doc
Скачиваний:
117
Добавлен:
11.03.2016
Размер:
1.97 Mб
Скачать

Доступ к анонимным каналам c использованием итератора ostream_iterator

Канал можно также испо л ьзовать с итераторами ostream_iterator и istream_ iterator, которые представляют собой обобщенные объектно-ориентированные указатели. Итератор ostream_iterator позволяет передавать через канал целые контейнеры (т.е. списки, векторы, множества, очереди и пр.). Без использования iostreamo6beKTOB и итератора ostream_iterator передача контейнеров объектов была бы очень громоздкой и подверженной ошибкам процедурой. Операции, которые доступны для классов ostream_iterator и istream_iterator, перечислены в табл. 11.4.

Таблица»11.4. Операции, доступныедля классов ostream_iterator и istream_iterator

istream_iterator

а == b отношение эквивалентности

а != b отношение неэквивалентности

*a разыменовывание

++r инкремент (префиксная форма)

r++ инкремент (постфиксная форма)

ostream_iterator

++r инкремент (префиксная форма)

r++ инкремент (постфиксная форма)

Обычно эти итераторы используются вместе с iostreams-классами и стандартными алгоритмами. Итератор ostream_iterator предназначен только для последовательно выполняемой записи. После доступа к некоторому элементу программист не может вернуться к нему опять, не повторив всю итерацию сначала. При использовании этих итераторов канал обрабатывается как последовательный контейнер. Это означает, что при связывании канала с iostreams-объектами посредством итератора ostream_iterator и файловых дескрипторов мы можем применить стандартный алгоритм обработки данных для ввода их из канала и вывода их в канал. Причина того, что эти итераторы можно использовать вместе с каналами, состоит в связи, которая существует между итераторами и iostreams-классами. На рис. 11.10 представлена диаграмма, отображающая отношения между итераторами ввода-вывода и iostreams-классами.

На рис. 11.10 также показано, как эти классы взаимодействуют с объектно-ориентированным каналом. Рассмотрим подробнее, как итератор ostream_iterator используется с объектом класса ostream. Если инкрементируется указатель, мы ожидаем, что он будет указывать на следующую область памяти. Если же инкрементируется итератор ostream_iterator, он переме щ ается на следующую позицию выходного потока. Присваивал значение разыменованному указателю, мы тем самым помещаем это значение в область, на которую он указывает. Присваивал значение итератору ostream_iterator, мы помещаем это значение в выходной поток. Если выходной поток связан с объектом cout, это значение отобразится на стандартном устройстве вывода. Мы можем объявить объект класса ostream_iterator следующим образом, ostream_iterator<int> X(cout, «\n»);

Тогда X является объектом типа ostream_iterator. При выполнении операции инкремента X++; итератор X перейдет к слелую щ ей позиции выходного потока. А при выполнении этой инструкции присваивания

*X = Y;

значение Y будет отображено на стандартном устройстве вывода. Дело в том, что оператор присваивания "=" перегружен дл я использования объекта класса ostream. В результате объявления

ostream_iterator<int> X(cout, «\n»);

будет создан объект X с использованием аргумента cout. Второй аргумент в конструкторе является разделителем, который автоматически будет размещаться после каждого int -значения, вставляемого в поток данных. Объявление итератора ostream_iterator выглядит следующим образом (листинг 11.22).

// Листинг 11.22. Объявление класса ostream_iterator

template <class _Tp> class ostream_iterator {

protected:

ostream* _M_stream;

const char* _M_string; public:

typedef output_iterator_tag iterator_category;

typedef void value_type;

typedef void difference_type;

typedef void pointer;

typedef void reference;

ostream_iterator(ostream& _s) : _M_stream(&_s),_M_string(0) {}

ostream_iterator(ostream& _s, const char* _с): _M_s tream (&_s) , _M_string (_с) { }

ostream_iterator<_Tp>& operator=(const _Tp& _value) {

*_M_stream << _value;

if (_M_string){

*_M_stream << _M_string;

return *this;

}

ostream_iterator<_Tp>& operator*() { return *this; }

ostream_iterator<_Tp>& operator++() { return *this; }

ostream_iterator<_Tp>& operator++(int) { return *this; }

};

Конструктор класса ostream_iterator принимает ссылку на объект класса ostream. Класс ostream_iterator находится с классом ostream в отношении агрегирования. Назначение класса istream_iterator прямо противоположно классу ostream_iterator. Он используется с объектами класса istream (а не с объектами класса ostream). Если объекты классов istream_iterator и ostream_iterator связаны с iostream-объектами, которые в свою очередь связаны с файловыми дескрипторами канала, то при каждом инкрементировании итератора типа istream_iterator из канала будут считываться данные, а при каждом инкрементировании итератора типа ostream_iterator в канал будут записываться данные. Чтобы продемонстрировать, как эти компоненты работают вместе, рассмотрим две программы (11.2 и 11.2.1), в которых используются анонимные каналы связи. Про-грамма11.2 представляет родительский процесс, а программа11.2.1— сыновний. В»родительской» части для создания сыновнего процесса используются системные функции fork() и execl (). При том, что файловые дескрипторы наследуются сыновним процессом, их значения незамедлительно становятся достоянием программы 11.2.1 благодаря вызовуфункции execl() .

// Программа 11.2

10 int main(int argc, char *argv[])

11 {

12

13 int Size,Pid,Status,Fdl[2],Fd2[2];

14 pipe(Fdl); pipe(Fd2);

15 strstream Buffer;

16 char Value[50];

17 float Data;

18 vector<float>X(5,2.1221), Y;

19 Buffer « Fdl[0] « ends;

20 Buffer » Value;

21 setenv(«Fdin»,Value,l);

22 Buffer.clear();

23 Buffer « Fd2[l] « ends;

24 Buffer » Value;

25 setenv(«Fdout»,Value,l);

26 Pid = fork();

27 if(Pid != 0){

28 ofstream OPipe;

29 OPipe.attach(Fdl[l] ) ,-

30 ostream_iterator<float> OPtr(OPipe,"\n»);

31 OPipe « X.size() « endl;

32 copy(X.begin(),X.end(),OPtr);

33 OPipe « flush;

34 ifstream IPipe;

35 IPipe.attach(Fd2[0]);

36 IPipe » Size;

37 for(int N = 0; N < Size;N++)

38 {

39 IPi ре » Data;

40 Y.push_back(Data);

41 }

42 wait(&Status);

43 ostream_iterator<float> OPtr2(cout,"\n»);

44 copy(Y.begin(),Y.end(),OPtr2);

45 OPipe.close();

46 IPipe.close();

47 }

48 else{

49 execl("./programll-2b»,«programll-2b»,NULL);

50 } 51

52 return(0);

53 }

В строках 21 и 25 системнал функция setenv () используется для передачи значений файловых дескрипторов сыновнему процессу. Это возможно благодаря тому, что сыновний процесс наслелует среду родительского процесса. Мы можем устанавливать переменные среды в программе с помощью вызова функции setenv (). В данном случае мы устанавливаем их следующим образом.

Fdin=filedesc; Fdout=filedesc;

Сыновний процесс затем использует системный вызов getenv( ) для считывания значений переменных Fdin и Fdout. Значение переменной Fdin будет представлять «считывающий конец» канала для сыновнего процесса, а значение переменной Fdout — «записывающий». Использование системных функций setenv () и getenv() обеспечивает просгую форму межпроцессного взаимодействия (interprocess communication — IPC) между родительским и сыновним процессами. Каналы создаются при выполнении инструкций, приведенных в строке 14. Родительский процесс присоединяется к одному концу канала для операции записи с помощью метода attach() (строка29). После присоединения любые данные, помещенные в объект OPipe типа ofstream, будут записаны в канал. Итератор типа ostream_iterator подключается к объекгу OPipe при выполнении следующей инструкции (строка 30):

ostream_iterator<float> OPtr(OPipe,"\n»);

Теперь итератор OPtr ссылается на объект OPipe. После каждой порции помещаемых в канал данных будет вставляться разделитель "\n». С помощью итератора OPtr мы можем поместить в канал любое количество float -значений. При этом мы можем связать с каналом несколько итераторов различных типов. Но в этом случае необходимо, чтобы на «считывающем» конце канала данные извлекались с использованием ите раторов соответствующих типов. При выполнении слелующей инструкции из программы 11.2 в канал сначала помещается количество элементов, подлежащих передаче: OPipe « X.size() « endl;

Сами элементы отправляются с использованием одного из стандартных С++-алгоритмов:

copy(X.begin() ,X.end() ,OPtr) ;

Алгоритм copy () копирует содержимое одного контейнера в контейнер, связанный с итератором приемника. Здесь итератором приемника является объект OPtr. Объект OPtr связан с объектом OPipe, поэтому при выполнении алгоритма copy () («уместившегося» в одной строке кода) в канал переписывается все содержимое контейнера. Этот пример демонстрирует возможность использования стандартных алгоритмов для организации взаимодействия между различными частями сред параллельного или распределенного программирования. В данном случае алгоритм copy () пересылает информацию от одного процесса другому (из одного адресного пространства в другое). Эти процессы выполняются параллельно, и алгоритм copy () значительно упрощает взаимодействие между ними. Мы подчеркиваем важность этого подхода, поскольку, если есть хоть какал-то возможность упростить логику параллельной или распределенной программы, ею нужно непременно воспользоваться. Ведь межпроцессное взаимодействие — это один из самых сложных разделов параллельного или распределенного программирования. С++-алгоритмы, библиотека классов iostreamS и итератор типа ostream_iterator как раз и позволяют понизить уровень сложности разработки таких программ. Использование манипулятора flush (в строке 33) гарантирует прохождение данных по каналу.

В программе 11.2.1 сыновний процесс сначала получает количество объектов, принимаемых от канала (в строке 36), а затем для считывания самих объектов использует объект IPipe класса istream.

// Программа 11.2.1

11 class multiplier{

12 float X;

13 public:

14 multiplier(float Value) { X = Value;}

15 float &operator()(float Y) { X = (X * Y);return(X);}

16 }; 17

18

19 int main(int argc,char *argv[])

20 {

21 char Value[50] ;

22 int Fd[2] ;

23 float Data;

24 vector<float> X;

25 int NumElements;

26 multiplier N(12.2);

27 strcpy(Value,getenv(«Fdin»));

28 Fd[0] = atoi(Value);

29 strcpy(Value,getenv(«Fdout»));

30 Fd[l] = atoi(Value);

31 ifstream IPipe;

32 ofstream OPipe;

33 IPipe.attach(Fd[0]) ;

34 OPipe.attach(Fd[l]) ;

35 ostream_iterator<float> OPtr(OPipe,"\n»);

36 IPipe » NumElements;

37 for(int N = 0;N < NumElements;N++)

38 {

39 IPipe » Data;

40 X.push_back(Data);

41 }

42 OPipe « X.size() « endl;

43 transform(X.begin(),X.end(),OPtr,N);

44 OPipe « flush;

45 return(0); 46

47 }

Сыновний процесс считывает элементы данных из канала, помещает их в вектор, азатем выполняет математические преобразования над каждым элементом вектора, после чего отправляет их назад родительскому процессу. Математические преобразования (строка43) выполняются с использованием стандартного С++-алгоритма transform и пользовательского класса multiplier. Алгоритм transform применяет к каждому элементу контейнера операцию, а затем результат этой операции помещает в контейнер-приемник. В данном случае контейнером-приемником служит объект Optr, который связан с объектом OPipe. Заголовки, которые необходимо включить в программу 11.2.1, приведены в разделе «Профиль программы 11.2.1».

Профиль программы 11.2.1

Имя программы program11-2b.cc

Описа н ие Программа представляет собой код сыновнего процесса, который запускается npoграммой 11.2. В этой программе для получения содержимого контейнера, отправленного из программы 11.2, используется объект класса ifstream. Для отправки через канал обработанной информации родительскому процессу в программе исполь-|зуется объект класса ostream_iterator и стандартный алгоритм transform.

Требуемые заголовки

<iostream>, algorithm>, <fstream>, <vector>, <iterator>, <stdlib.h>, |<string.h>, <unistd.h>.

Инструкции no компиляции и компоновке программ

с++ -o»programll-2b programll-2b.ee

Инструкции по выполнению [Эта программа запускается программой 11.2.

Несмотря на то что классы библиотеки iostream, итераторы типа istream_iterator и ostream_iterator упрощают программирование канала, они не изменяют его поведение. По-прежнему остаются в силе вопросы блокирования и проблемы, связанные с корректным порядком открытия и закрытия каналов, рассмотренные в главе 5. Но использование основных механизмов тех же методов объектно-ориентированного программирования все же позволяет понизить уровень сложности параллельного и распределенного программирования.