
- •Міністерство освіти і науки україни
- •Розділ 1. Інкапсуляція та приховування інформації
- •1.1 Визначення та використання класів
- •1.2. Поля і методи класів
- •1.2.1 Поля і методи класів
- •1.2.2 Опис об’єктів
- •1.2.3 Вказівка this
- •Void cure(int health, int ammo)
- •1.3 Інкапсуляція та приховування інформації
- •1.3.1. Приховані дані
- •1.3.2. Загальнодоступні і приватні члени класу
- •1.3.3. Захищені члени класу
- •Void b::fb()
- •Void c::fc()
- •Void c::fc(a&a)
- •Void main()
- •1.3.4. Організація загального інтерфейсу
- •Void main()
- •1.4 Конструктори і деструктори
- •Void main()
- •Завдання
- •Розділ 2. Класи і підкласи
- •2.1. Конструктор копіювання
- •2.2 Вкладені класи
- •Void External::Inner::MethodInner(const External &t)
- •2.3 Статичні елементи класу
- •2.3.1 Статичні поля
- •2.3.2 Статичні методи
- •Void f()
- •2.4 Дружні функції і класи
- •2.4.1 Дружня функція
- •Void Spouse(Person &p)
- •Void main()
- •2.4.2 Дружній клас
- •Завдання
- •Розділ 3. Спадкування класів
- •3.1 Спадкування класів
- •Void b::bb(int u)
- •Void main()
- •Приклад.
- •Void main()
- •Void main()
- •Void main()
- •3.2 Множинне спадкування
- •Void main()
- •Void main()
- •3.3. Типовий приклад спадкування
- •Void DatabaseObject::Display ( )
- •Завдання
- •Розділ 4. Поліморфізм
- •4.1. Віртуальні функції
- •Void main()
- •Void main()
- •4.2 Абстрактні класи
- •Void show(a* a)
- •Void main()
- •4.3. Приклади поліморфізму
- •Virtual double f1()
- •Void main()
- •4.4. Внутрішнє представлення об’єктів і таблиця методів
- •Void do_(a& a)
- •Void main()
- •Void show(a* a)
- •Void main()
- •Завдання
- •Розділ 5. Перевантаження операторів
- •5.1 Загальні відомості
- •5.2 Перевантаження унарних операторів
- •Int geth()
- •Void set_h (int h)
- •5.3 Перевантаження бінарних операторів та операторів присвоювання
- •Void main()
- •5.4 Перевантаження операторів new і delete
- •Void * pObj::operator new(size_t size)
- •Void pObj::operator delete(void* ObjToDie, size_t size)
- •5.5 Перевантаження оператору приведення типу
- •Operator ім’я нового типу ();
- •5.6 Перевантаження оператору виклику функції
- •5.7 Перевантаження оператору індексування
- •Vect::Vect (int n): size(n)
- •Завдання
- •Розділ 6. Обробка виключних ситуацій
- •6.1 Загальні відомості про виключні ситуації
- •6.2 Синтаксис виключень
- •6.3 Перехоплення виключень
- •Void f1()
- •Void f2()
- •Void main()
- •Void GotoXy(int X, int y)
- •Void kontr (char* str) throw (const char*)
- •Void main()
- •Void MyFunc()
- •Void main()
- •6.4 Список виключень функції
- •6.5 Виключення в конструкторах та деструкторах
- •6.6 Ієрархії виключень
- •Завдання
- •Розділ 7. Рядки
- •Void main ()
- •7.1.1 Конструктори і операції привласнення
- •7.1.2 Операції
- •7.2. Функції класу string
- •7.2.1 Привласнення і додавання частин рядків
- •7.2.2 Перетворення рядків
- •Void main ()
- •7.2.3 Пошук підрядків
- •Void main()
- •7.2.3 Порівняння частин рядків
- •Void main ()
- •7.2.4 Отримання характеристик рядків
- •Завдання
- •Розділ 8. Шаблони класів
- •8.1. Загальна характеристика динамічних структур даних
- •8.2. Стек
- •Void main()
- •Void push(Node **top, int d)
- •Int pop (Node **top)
- •8.3. Черга
- •Void main()
- •Void add(Node **pend, int d)
- •Int del(Node **pbeg)
- •8.4. Лінійний список
- •Void main()
- •Void add(Node **pend, int d)
- •8.5. Шаблони функцій
- •Void main()
- •Void myfunc(type1 X, type2 y)
- •Void main()
- •8.6 Загальні відомості шаблонів класів
- •Void List ::print()
- •Void List::print_back()
- •Void main()
- •8.7 Створення шаблонів-класів
- •Void main()
- •8.8 Спеціалізація шаблонів класів
- •8.9 Переваги та недоліки шаблонів
- •Завдання
- •Розділ 9. Модульні програми (проектування об’єктно-орієнтованого програмування)
- •9.1 Короткі відомості
- •9.2 Збірка вихідних текстів
- •Void main()
- •9.3 Відділення інтерфейсу від реалізації
- •9.4 Шаблони та модульність. Простір імен
- •9.5 Фізичне розділення простору імен
- •9.6 Міжмодульні змінні та функції
- •9.7 Ініціалізація глобальних об'єктів
- •Завдання
- •Розділ 10. Контейнерні класи
- •10.1 Загальні відомості
- •10.2 Послідовні контейнери
- •Void main()
- •10.2.1 Вектори (vector)
- •Void main()
- •Void main()
- •10.2.2. Двосторонні черги (deque)
- •10.2.3 Списки (list)
- •Void main()
- •Void main()
- •10.2.4 Стеки (stack)
- •Void main()
- •10.2.5 Черги (queue)
- •Void main()
- •Void main()
- •10.2.6 Черги з пріоритетами (priority_queue)
- •Void main()
- •Void main()
- •10.3 Асоціативні контейнери
- •10.3.1 Загальні відомості про асоціативні контейнери
- •Void main()
- •10.3.2 Словники (map)
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •10.3.3 Множини (set)
- •Void main()
- •Void main()
- •Завдання
- •Розділ 11. Алгоритми
- •11.1 Ітератори
- •11.2 Функціональні об'єкти
- •Void main()
- •Void main()
- •11.3 Алгоритми
- •11.3.1 Немодифікуючі операції з послідовностями
- •Void main ()
- •Void main()
- •Void main()
- •11.3.2 Модифікуючі операції з послідовностями
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •11.3.3 Алгоритми, пов'язані з сортуванням
- •Void main()
- •Void main()
- •Void main()
- •Void main()
- •11.3.4 Узагальнені чисельні алгоритми
- •Void main()
- •Void main()
- •Завдання
- •Список літератури
Розділ 8. Шаблони класів
8.1. Загальна характеристика динамічних структур даних
Будь-яка програма призначена для обробки даних, від способу організації яких залежать алгоритми роботи, тому вибір структур даних повинен робитись перед створенням алгоритмів. Найчастіше в програмах використовуються масиви, структури і їх поєднання, наприклад, масиви структур, полями яких є масиви та структури.
Пам'ять під дані виділяється або на етапі компіляції (в цьому випадку необхідний об'єм має бути відомий до початку виконання програми, тобто заданий у вигляді константи), або під час виконання програми за допомогою операції new. У обох випадках виділяється безперервна ділянка пам'яті.
Якщо до початку роботи з даними неможливо визначити, скільки пам'яті буде потрібно для їх зберігання, пам'ять виділяється в міру необхідності окремими блоками, пов'язаними один з одним за допомогою вказівок. Такий спосіб організації даних називається динамічними структурами даних, оскільки їх розмір змінюється під час виконання програми. З динамічних структур в програмах найчастіше використовуються стеки, черги, лінійні списки. Вони розрізняються способами зв'язку окремих елементів і допустимими операціями.
Динамічні структури широко застосовують і для ефективнішої роботи з даними, розмір яких відомий, особливо для вирішення задач сортування, оскільки впорядковування динамічних структур не вимагає перестановки елементів, а зводиться до зміни вказівок на ці елементи. Наприклад, якщо в процесі виконання програми потрібно багато разів упорядковувати великий масив даних, має сенс організувати його у вигляді лінійного списку.
Елемент будь-якої динамічної структури даних є структурою (struct), що містить принаймні два поля: для зберігання даних і для вказівки. Полів даних та вказівок може бути декілька. Опис простого елементу виглядає таким чином:
struct Node
{
Data d; // тип даних Data має бути визначений раніше
Node *р;
};
Розглянемо реалізацію основних операцій з динамічними структурами даних (стек, черга, лінійний список).
8.2. Стек
Стек реалізує принцип обслуговування LIFO (last in – first out, останнім прийшов, – першим пішов). Стек можна представити як стопку книг, які складаються одна на одну. Так першою буде взята остання книга в стопці.
Нижче приведена програма, яка формує стек з п'яти цілих чисел (1, 2, 3, 4, 5) і виводить його на екран. Функція поміщення елементу в стек називається push, а вибірки – pop. Вказівка для роботи із стеком (top) завжди посилається на його вершину.
#include <iostream>
using namespace std;
struct Node
{
int d;
Node *p;
};
Node * first(int d);
void push(Node **top, int d);
int pop(Node **top);
Void main()
{
Node* top = first(1);
for (int i = 2; i<6; i++) push(&top, i);
while (top)
cout << pop(&top) << " ";
}
// Початкове формування стеку
Node * first(int d)
{
Node *pv = new Node;
pv->d = d;
pv->p = 0;
return pv;
}
// Занесення в стек
Void push(Node **top, int d)
{
Node *pv = new Node;
pv->d = d;
pv->p = *top;
*top = pv;
}
// Вибірка із стеку