
- •Фгбоу впо «тувинский государственный университет»
- •Предисловие
- •Глава I. Математические понятия, предложения и умозаключения
- •Введение
- •1. Понятия. Объем и содержание понятий
- •2. Отношения между понятиями
- •3. Определение понятий. Способы определения понятий
- •4. Классификация понятий
- •5. Математические предложения
- •5.1. Высказывания и операции над ними
- •5.2. Высказывательные формы (предикаты) и операции над ними
- •Высказывания с кванторами
- •5.3. Отношения логического следования и равносильности между высказывательными формами
- •6. Умозаключения (рассуждения) и их виды
- •3. А(х)⇒в(х), в(х)⇒с(х) - правило силлогизма.
- •Лекция 2 множества. Соответствия и отношения
- •2.1. Понятия множества и элемента множества
- •2.2. Способы задания множеств
- •2.3. Отношения между множествами
- •2.4. Операции над множествами
- •2.5. Разбиение множества на классы
- •2.6. Соответствия между элементами двух множеств
- •2.7. Равномощные множества
- •2.8. Отношения между элементами одного множества
- •Лекция 3 геометрические фигуры
- •3.1. Понятие геометрической фигуры
- •3.2. Геометрические фигуры на плоскости
- •3.3. Многоугольники, круг
- •3.4. Геометрические фигуры в пространстве
- •2.5. Тела вращения
- •Лекция 4 величины и их измерение
- •4.1. Понятие величины
- •4.2. Измерение величины
- •4.3. Длина, площадь, масса, время
- •4.4. Зависимость между величинами
- •4.5. История развития системы единиц величин
- •Лекция 6 натуральные числа и нуль
- •5.1. Этапы развития понятия натурального числа
- •5.2. Натуральный ряд и его свойства. Счет
- •5.3. Теоретико-множественный смысл натурального числа и нуля
- •5.4. Натуральное число как результат измерения величины
- •5.5. Способы записи чисел
- •5.6. Особенности десятичной системы счисления
- •Лекция 6 текстовые задачи
- •6.1. Понятие текстовой задачи
- •6.2. Способы решения задачи
- •6.3. Основные этапы решения задачи
- •I этап.
- •II этап.
- •IV этап.
- •6.4. Моделирование в процессе решения задач
- •Оглавление
6. Умозаключения (рассуждения) и их виды
Большую часть знаний об окружающей нас действительности мы получаем с помощью рассуждений. Выводы в них будут истинными, если они являются результатами правильных рассуждений. Правильными рассуждениями считают рассуждения, построенные по правилам логики. Учителю нужны знания о тех правилах, в соответствии с которыми строятся правильные рассуждения. Рассуждения лежат в основе доказательств, без которых трудно представить математику.
В логике наряду с термином «рассуждение» используется термин «умозаключение».
Умозаключением (рассуждением) называется логическая операция, в результате которой получают новое знание на основе некоторого имеющегося знания или из некоторых утверждений А1, А 2, А 3, А 4 … А n (n 1) получают новое по отношению к исходным, утверждение В.
Умозаключение состоит из посылок и заключения.
Посылки умозаключения – это исходные утверждения, а заключением называется новое утверждение, т.е. утверждение, содержащее новое знание.
В логике принято указывать вначале посылки, а потом заключение, но в конкретном умозаключении их порядок может быть произвольным: вначале заключение – потом посылки; заключение может находиться между посылками.
Пример 1. Из двух утверждений «Все жидкости упруги» и «Вода – жидкость», можно получить новое утверждение следующим образом: «Все жидкости упруги. Вода – жидкость, значит, вода упруга». Здесь исходные утверждения «Все жидкости упруги» и «Вода – жидкость» являются посылками, а новое утверждение «Вода упруга» является заключением умозаключения.
Рассмотрим примеры умозаключений, которые выполняют младшие школьники при изучении математики.
Пример 2. Ученику предлагается объяснить, почему число 35 можно представить в виде суммы 30 и 5. Он рассуждает: «Число 23 – двухзначное. Любое двухзначное число можно представить в виде суммы разрядных слагаемых. Следовательно, 35=30+5».
В этом умозаключении первое и второе предложения – посылки, причем первая – частная (характеризует только 35), а вторая – общего характера; заключение – это часть предложения, которая стоит после слова «следовательно», причем заключение носит частный характер.
Пример 3. Один из приемов ознакомления с переместительным свойством умножения заключается в следующем. Используя различные средства наглядности, школьники вместе с учителем устанавливают, что, например, 2∙5=5∙2, 6∙3=3∙6, 4∙7=7∙4. А затем на основе полученных равенств делают вывод: для всех натуральных чисел а и в верно равенство а∙в=в∙а.
В данном умозаключении посылками являются первые три равенства, в которых утверждается, что для конкретных натуральных чисел выполняется такое свойство, т.е. посылки будут частными. Заключением является утверждение общего характера – сделанный вывод.
Как видно из рассмотренных примеров, умозаключения бывают разные. В примерах 1 и 2 заключение логически следует из посылок, и мы не сомневаемся в его истинности.
В зависимости от того, существует ли между посылками и заключением отношение логического следования, выделяют два вида умозаключений: дедуктивные (лат. слово «deduction» означает «выведение»), которые в логике считают правильными и недедуктивные (неправильные).
Дедуктивным умозаключением называется умозаключение, в котором посылки и заключение находятся в отношении логического следования, т.е. во всех случаях, когда посылки истинны, заключение тоже истинно.
Если посылки умозаключения обозначить буквами А1,А2,... Аn, а заключение - буквой В, то схематично умозаключение можно представить в виде: А1,А2,...Аn⇒В.
Используют
в логике и такую запись
.
Черта в данной записи заменяет слово
«следовательно» («значит»).
В дедуктивном умозаключении из истинных посылок всегда следует истинное заключение. К дедуктивным умозаключениям относятся, например, следующие:
Пример 4. «Если идет дождь, то земля становится мокрой. Идет дождь. Следовательно, земля мокрая».
Пример
5.
. Пример 6.
.
Пример 7. Если х∶2, то х - четное число. Число 2002∶2.
Число 2002 - четное.
Пример 8. Если х∶9, то х∶3. Число 122 не делится на 3.
Число 122 не делится на 9.
Правильность умозаключения определяется его формой, а не истинностью входящих в него утверждений. При анализе правильности умозаключения необходимо помнить о том, что нельзя отождествлять правильность умозаключения с истинностью полученного вывода. В логике существуют правила, соблюдая которые, можно строить дедуктивные умозаключения. Эти правила называют правилами вывода или схемами дедуктивных умозаключений.
Наиболее часто встречаются следующие схемы дедуктивных умозаключений:
1. А(х)⇒В(х), А(а) - правило заключения;
В(а)
2. А(х)⇒В(х), В(а) - правило отрицания;
А(а)