Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher_Mathematics_Part_1

.pdf
Скачиваний:
1052
Добавлен:
19.02.2016
Размер:
6.63 Mб
Скачать

We have

 

PN = y , QN = MN tgα =

 

 

x f (x) =

f (x)dx = dy.

 

So, the differential of function

f (x)

under given values of х and

x equals

the increment QN of secant MQ ordinate, which is drawn to the curve

y = f (x) at

point M , when argument receives increment x.

 

 

 

 

19.2. General properties of the differential

 

Let

u(x) ,

v(x) be differentiable functions. Then the following equalities

are true:

 

 

 

 

 

 

 

 

 

 

1.

dC = 0 ( C = const ).

2. d(u +v) = du +dv .

 

3.

d(uv) = udv +vdu .

4. d(Cu) = Cdu .

 

 

5.

d (u ) = vdu udv , v 0.

6. df (u) = f '(u)du, u = u(x).

 

 

v

v

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.3.The application of differentials in calculus of approximation and in error theory

At small values of x the following formula is true:

y dy

or

f (x + x) f (x) + f ' (x) x

Let y = f (x) , and the value х is defined approximately, in other words with

some absolute error x , then a value of function у will have its own absolute error y too. The relative error of computation of the value of function y can be

approximately calculated with the help of differential:

y

dy

 

.

y

y

 

 

221

19.4. Tangent and normal

We remember that tangent equation, constructed to the graph of function y = f (x) at point P0 (x0 , y0 ) is the following:

y y0 = f (x0 )(x x0 ) ,

(3.10)

where y0 = f (x0 ) . Equation of normal is

y y0 = −

1

(x x0 ) .

(3.11)

f ' (x0 )

 

 

 

Micromodule 19

EXAMPLES OF PROBLEMS SOLUTION

Example 1. Find the differential of function y = x2 +2x at point x = 2 . Solution. The first method. As the differential is the main, linear with respect

to x , part of increment of function at point

x , let’s find the increment of given

function at point

x = 2 . Therefore

 

 

 

 

 

 

 

 

 

y = y(2 + x) y(2) = (2 +

x)2 + 2(2 +

x) 8 = 6 x + ( x)2 .

 

The linear part of increment is the expression 6

x . Finally, dy(2) = 6

x .

The second method. As dy = f ' (x)dx , then we have

 

 

 

 

y' = 2x + 2 ;

y' (2) = 6 ;

dy(2) = 6dx.

 

 

 

Example 2. Find the differential of function

y =

1x2 + ln sin x.

 

 

Solution. We have

 

 

 

 

 

 

 

 

 

 

 

 

dy = d( 1x2

+ln sin x) = ( 1x2

+ ln sin x)'dx =

 

 

 

 

= (

 

x

 

+ ctg x)dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1x2

 

 

 

 

 

 

 

Example 3. Calculate approximate value ( with the help of differential) of

15 .

Solution. Let’s consider a function f (x) =

x . Let

x =16 , x +

x = 15 ,

x = −1 . Then

x + x

x +

1

x , or

15 4 +

1

(1) = 31 =

3.875 .

 

 

2

x

 

 

 

 

 

2 4

8

 

 

222

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4. Calculate approximate value of

tg 54° .

 

 

 

Solution. Let’s consider a function

f (x) = tg x . Then we receive:

tg(x + x) tg x + (tg x)

x ;

 

 

tg(x +

x) tg x +

1

 

x .

 

 

cos2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

Let’s convert degrees to radians: 54° = 54π

= 3π .

 

 

 

 

π , x + x =

 

 

 

 

 

 

 

 

180

 

10

 

 

 

 

Let x =

3π ,

x =

3π π

=

 

π

 

, then

 

 

 

20

 

 

 

 

 

4

10

 

10

 

4

 

 

 

 

 

 

 

 

 

tg 3π

tg

π

+

 

1

 

 

 

π

 

=1+

π

1,314 .

 

 

 

 

cos2 π

 

 

 

 

 

 

 

10

 

4

 

 

 

20

 

 

10

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

Finally,

tg 54° ≈ 1,314.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5. Find tangent equation and equation of normal, drawn to the curve y = x ln x +1 at point with ordinate 1.

Solution. By conditions y0 =1. Let’s find an abscissa of touching point. We have

1= x ln x +1, x ln x = 0 ; x 0 . Therefore ln x = 0 , then

x0 =1 .

Let’s find derivative

 

y′ = (x ln x + 1)′ = ln x + (ln x)x = ln x + 1.

 

Then y(1) = ln1+ 1 = 1. Substituting values of x0 , y0 and

y(x0 ) in

formula of tangent (3.10) and normal (3.11), we will obtain tangent equation

y 1 = 1 (x 1) , then y = x , and equation of normal

y 1 = − 1

(x 1)

, or

y = 2 x.

1

 

 

 

 

 

Example 6. Find an angle between the tangent, constructed to the curve

y = x3 2x2 5x at point x =1 , and positive direction of

Ox .

Solution. Let’s find derivative y′ = 3x2 4x 5 . Then

y(2) = 12 8 5 = −1 .

According to the geometrical interpretation of derivative, solve the equation tg α =1 . We obtain α = 34π (let’s point out that 0 ≤ α < π ).

223

Example 7. Write the tangent equation and equation of normal to the curve x3 +2 y3 = 5xy at point M (2; 1) .

Solution. Substituting coordinates of point M in equation of the curve you will obtain right equality 10=10. Then point М will belong to this curve and

x0 = 2, y0 =1.

 

 

 

 

 

 

 

 

 

 

 

 

Let’s find derivative of function

y at point x0 . We have:

(x3 + 2y3 )′ = (5xy), 3x2 + 6y2 y ' = 5( y + xy ') , (6y2 5x) y ' = 5y 3x2 ,

 

 

y' =

5y 3x3

y' (2) =

5 13 8

=

19

.

 

 

 

 

,

 

 

 

Then:

 

 

 

6y 2

5x

 

6 15 2

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

y 1 = 19 (x 2) , or 19x 4y 34 = 0 is equation of tangent,

 

4

 

 

 

 

 

 

 

 

 

 

y 1 = −

 

4

(x 2) ,

or 4x + 19 y 27 = 0 is equation of normal.

19

 

 

 

 

 

 

 

 

 

 

 

Example 8. Compose tangent equation for an ellipse, given by equations

x = 2 sin t ,

y = 3cost,

at point M0 (1; y0 ) , where

y0 > 0.

 

 

 

 

 

 

 

 

 

Solution. Equation

of

tangent is

y y0

= f ' (x0 )(x x0 ) . By conditions

x =1 . Let’s find an ordinate of touching point

y . t = π

 

and

t =

5π

 

are

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

6

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solutions

of

the

equation

1= 2 sin t

if

 

t [0; 2π) . Taking

 

into

account

the

condition

y

> 0,

that is, cost > 0, we obtain

t =

π . Then

y

 

= cos π =

 

3

.

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

0

 

6

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next we shall find the derivative f (x0 ) of the parametrically given function:

 

 

 

 

 

y' (t) = −3sin t ,

y '(t) = 2cost.

 

 

 

 

 

 

 

 

 

Therefore

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y x' =

3sin t

= −

3

tgt ;

 

f ' (1) = − 3 tg π = −

 

3 .

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2 cos t

 

 

 

 

 

 

 

 

2

6

2

 

 

 

 

 

 

 

Tangent equation is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

3

= −

3

(x 1) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

 

 

y = −

 

3

x +

3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

224

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Micromodule 19

CLASS AND HOME ASSIGNMENT

1. Find the increment and the differential of the function y = x2 4x +3 , if:

а)

x =1 , x = 0,1 ; b)

x = 3 ,

 

x = 0,05 .

 

Find the differential of a function:

 

2. y = (4x2 )2x . 3.

y =

sin x + tg2 x .

4. y = ln arcsin x .

5.

y = x2x+1 . 6. y =

arccos x

+arctg

1

.

7. y = 4 x + x log2 tg x .

 

 

 

 

x2

 

 

x

 

Find the differential of an implicit function at the point M0 (x0 ; y0 ) :

8.x3 + y3 +3xy 15 = 0 , M0 (1; 2) .

9.ln x2 + y2 = arctg xy , M0 (0; 1) .

Calculate an approximate value with the help of the differential:

10. 3 131 . 11. (0, 95)6 . 12. sin 9° . 13. cos155° .

14. arctg1, 05 . 15. arccos 0, 02 . 16. ctg 85° .

Compose an equation of a tangent line and a normal to a curve, which is given by a parametric equation:

17.

x = t sin t , y =1cos t , at the point t =

π .

 

 

 

π .

2

 

18.

x = cos3 t , y = sin3 t , at the point t =

 

 

 

 

4

 

π .

19.

x = 2 cos t cos 2t , y = 2 sin t sin 2t , at the point t =

20.

x = tet , y = tet , at the point x = e .

 

 

2

 

 

 

 

0

 

 

 

Compose an equation of a tangent line and a normal to a curve at point М:

21.4x4 +6xy y4 = 0 , M (1; 2) .

22.x2 (2x y) = 2x y3 , M (1;1) .

23.x2 / 3 + y2 / 3 = 8 , M (8; 8) .

 

Answers

 

 

1. a) y = −0,19

, dy = −0,2 ; b) dy = 0,1,

y = 0,1025. 2.

2x[(4 x2 )ln 2 2x]dx .

5. x2x (2x ln x + 2x +

1)dx . 8. 3dx / 5 . 9. dx.

10.

5,08. 11. 0,7.

12. 0,157. 13. – 0,908.

14. 0,81. 15. 1,55. 16. 0,087. 17. y = x + 2 − π / 2 ; y = − x + π / 2 . 18. y + x = 2 / 2 ;

225

y = x . 19. y + x = 3 ;

y = x + 1 . 20. y = 1/ e ; x = e . 21. 14x 13y + 12 = 0 ;

13x + 14y 41 = 0 . 22.

y = x ; y = − x + 2 . 23. y + x =16; y = x .

Micromodule 19

SELF-TEST ASSIGNMENT

19.1. Calculate an approximate value with the help of the first differential:

19.1.1. cos 61° .

19.1.2. e0,2 .

19.1.3. sin 33° .

19.1.4. arctg1, 05 .

19.1.5.

120 .

19.1.6.

3 340 .

19.1.7. 3 66 .

19.1.8.

5 33 .

19.1.9.

6 70 .

19.1.10. cos 85° .

19.1.11. sin 8° .

9.1.12. sin 28° .

19.1.13. arctg 0, 95 .

19.1.14. arctg 0, 9 .

19.1.15. e0,3 .

19.1.16. ln1, 05 .

19.1.17. ln 0, 97 .

19.1.18. ln1, 08 .

19.1.19. tg 47° .

19.1.20. ctg 50° .

19.1.21. (1, 02)5 .

19.1.22. arccos 0, 45 .

19.1.23. arcsin 0, 52 .

19.1.24. (1, 97)6 .

19.1.25. (2, 04)4 .

19.1.26. ln tg 48° .

19.1.27. ln tg 43° .

19.1.28. cos 86° .

19.1.29. sin 26° .

19.1.30. tg 40° .

19.2. Solve the tasks for composition of an equation of the normal and the tangent to a curve.

19.2.1. Write the equation of a normal and a tangent to the curve y = 13 x3 12 x2 + 56 at the points, where the slope of the tangent is equal to 2.

19.2.2. Write the equation of a normal and a tangent to the ellipse

x2

+

y2

= 1

9

4

 

 

 

at the points, where the slope of the normal line is equal to 12 .

19.2.3. Write

the

equation of

a normal

and a tangent to the ellipse

x = 3cost, y = 2sin t

at the points,

where the

tangent

is parallel

to the line

y =

2

x +4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

19.2.4. Write

the

equation of

a normal

and a

tangent to

the curve

y = 3x3 + 5x2 + 5x + 4

at the points, where the tangents are parallel to the line

y = 4x 2 .

226

19.2.5. Write the

 

equation

of a

normal and a tangent to the

curve

y = 2 x3

+ 5x2 + 9x +

2

 

 

at

the

points,

where the tangents are parallel

to the

3

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

line y = x 2 .

 

 

 

 

 

 

 

 

 

 

 

 

19.2.6. Write

the

 

 

equation of a

normal and a tangent to the

curve

y = 1 x3

+

7x2 + 15x + 1

at

the

points,

where the slope of the tangent

line is

3

 

 

 

 

 

 

3

 

 

 

 

 

 

equal to 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.2.7.

Write

the

 

 

equation of a normal and a tangent to the curve

y = x3 + 7x2 + 11x +

8

 

 

where the tangent is parallel to the line y = 3x 4 .

 

 

 

19.2.8.

Write

27

 

 

equation of a

normal and a tangent to the

curve

the

 

 

y = 5 x3

+

11x2 + 13x +

 

 

8

 

at the points, where the slope of the normal line is

75

 

3

 

1 .

 

 

 

 

 

 

 

 

 

equal to

 

 

 

 

 

 

 

 

 

 

 

 

19.2.9.

5

 

the

 

 

equation of a

normal and a tangent to the

curve

Write

 

 

y = 4 x3

+

5x2 + 3x +

4

 

 

at the points, where tangents and the x-axis form an

3

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

angle of1350 .

 

 

 

 

 

 

 

 

 

 

 

 

19.2.10.

Write

 

the

equation of a

normal and a tangent to the

curve

= x3 + 6x2 +

1 x + 5 at the points, where the slope of the normal line is equal

to 1 .

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

Write

 

the

equation of a

normal and a tangent to the

curve

19.2.11.

 

y = 1 x3

+ 7x2 + 10x + 130

at the points, where the tangents are parallel to the

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

line y = 3x +2 .

 

 

 

 

 

 

 

 

 

 

 

 

19.2.12.

Write

 

the

equation of a

normal and a tangent to the

curve

y = x3 + 6x2 + 2 x +

8

 

 

at the points, where the tangents are parallel to the line

 

 

 

y = −3x + 1 .

3

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.2.13.

Write

 

the

equation of a

normal and a tangent to the

curve

y = 3x3 + 6x2 x + 1

at the points, where the slope of the tangent lines is equal

to 4 .

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

Write

 

the

equation of a

normal and a tangent to the

curve

19.2.14.

 

y = 3x2 + 6x2 6x + 25

at the points, where the tangents and the x- axis form

9

the angle 1350 .

227

19.2.15.

Write

the

equation of a normal and

a

tangent

to

the

line

y =

x2 3x +6

at the point with the abscissa x

= 3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

19.2.16.

Write

the

equation of

a

 

normal

and

 

a

tangent

to the curve

y = (x +1)3

3x

at the point with the abscissa

x

= 2 .

 

 

 

 

 

19.2.17. Write the equation of

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

a

normal

 

and a

tangent

to

the

astroid x = 2

2 cos3 t,

y = 2 2 sin3 t , if t

= π .

 

 

 

 

 

 

 

 

19.2.18 Write

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

the

equation

of

 

a

normal

and

 

a

tangent

to the

cycloid

x = 2(t sin t),

y = 2(1cos t) , if

t =

 

π .

 

 

 

 

 

 

 

 

 

 

 

19.2.19. Write

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

the

equation

of

a

normal

and

a

tangent

to

the

parabola

y2 y +2x 4 = 0 at the point with the abscissa x

 

= 4 .

 

 

 

 

19.2.20.

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

Write

the

equation of

a

 

normal

and

 

a

tangent

to the curve

x2 +2xy +2y4 = 5 at the point

M0 (1; 1) .

 

 

 

 

 

 

 

 

 

 

 

19.2.21. Write

the

equation

of

 

a

 

normal

and

 

a

tangent to the

cycloid

x = 3(t sin t),

y = 3(1cos t) , if

t

=

 

3π

.

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

19.2.22.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Write

the

equation of

a

 

normal

and

 

a

tangent

to the curve

y = 3x3 6x2 6x +

7

at the points, where the tangents and the x- axis form

 

the angle 1350 .

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.2.23.

Write

the

equation of

a

 

normal

and

 

a

tangent

to the curve

y = 3x3 6x2 x +1 at the points, where the tangents are parallel to the line

y = 4x +5 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.2.24.

Write

the

 

 

equation of

a

normal

and

a

tangent

to

the

curve

x4 +3xy2 +3y4 =1 at the point M0 (1;1) .

 

 

 

 

 

 

19.2.25.

Write

the

 

 

equation of

a

normal

and

a

tangent

to

the

curve

y =

2

x

3

5x

2

+9x +

 

4

at the points, where the tangents are parallel to the

3

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bisectrix of the first coordinate quarter (angle).

 

 

 

 

 

 

19.2.26.

Write

the

 

 

equation of

a

normal

and

a

tangent

to

the

curve

y =

1

x

3

3x

2

+6x

1

 

at the points, where the tangents are parallel

to the

3

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

line y = 2x +3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

19.2.27.

Write

the

equation

of

a normal

and a tangent to the

curve x = t2 ,

 

 

y = t3 , if t = 2 .

 

 

 

 

 

 

 

 

228

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.2.28. Write the equation of a normal and a tangent to the curve

y =

4

x

3

5x

2

+3x +

1

at the points, where the tangents are parallel to the

3

 

 

3

 

 

 

 

 

 

 

bisectrix of the second coordinate quarter (angle).

19.2.29. Write the equation of a normal and a tangent to the curve

x3 3xy2 + y3 = 3 at the point

M0 (1; 2) .

19.2.30. Write

the

equation

of a normal and a tangent to the curve

y = x3 5x2 + x

1

 

at the points, where the normal is parallel to the line

27

 

 

 

 

 

y = 12 x +1 .

Micromodule 20

BASIC THEORETICAL INFORMATION.

HIGHER ORDER DERIVATIVES AND DIFFERENTIALS

Higher order derivatives of functions given explicitly, implicitly, or parametrically. Leibniz's formula. Higher order differentials.

Literature: [3, chapter 4, items 4.1—4.2], [4, part 5], [6, chapter 5, § 4], [7, chapter 6, § 18], [9], [10, chapter 4, § 12, 20], [12, chapter 3, §§ 22—24].

20.1. Higher order derivatives

Suppose differentiable function y = f (x) is defined on an interval (a; b), then its derivative f (x) , called also the first-order derivative or the first derivative, is a function of x too. The function f (x) may have derivative at the interval (a; b) too.

Definition 3.22. The later derivative is called the second derivative (or the second-order derivative).

It is denoted with one of the following symbols:

y'', f ''

 

d 2 y

 

d 2

f

 

d

dy

(x),

 

 

,

 

 

,

 

 

 

.

dx

2

dx2

 

 

 

 

 

 

dx dx

The second derivative has the following mechanical matter. If a mass point occurs in accordance with the law S = f (t) , then derivative Sis a velocity at

the given time point and S′′ is an acceleration in the same time point t.

Definition 3.23. Derivative of the second-order derivative, if it is existed, is called the third-order derivative.

229

 

y′′′ =

d

d 2 y

So, according to definition we write

 

 

 

2

.

 

 

 

 

dx

dx

 

 

The first derivative of the (n – 1)-th derivative, if it is existed, is called the n- th derivative:

 

 

( y ( n 1) ) , or y

( n )

=

d

 

d n 1 y

y ( n )

=

 

 

 

 

 

 

 

d x

d x

n 1

 

 

 

 

 

 

 

 

Derivatives having the order higher than one are called the higher order derivatives.

20.2 Leibniz’s formula

Suppose y = uv , where u(x) and v(x) are the n times differentiated functions. Then

k

 

n!

where Cn

=

(nk)!k!,

n

(uv)(n) = Cnk u(nk )v(k ) , k =0

n ! = 1 2 3 k ( n 1) n , 0 ! = 1 .

Particularly,

(u v ) '

= u ' v + u v ' (n = 1) ,

(u v ) ′′ = u ′′v + 2 u v ′ + u v ′′

(n = 2),

(u v ) ′′ = u ′′′v +

3u ′′v ′ + 3u v ′′ +

u v ′′′ (n = 3).

20.3. Calculation of the higher order derivatives of parametrically given functions

If some function is given parametrically by equations x = x(t) , y = y(t) , then derivatives are calculated by the following formulas:

 

 

 

 

 

 

dy

 

dy

 

y

 

d 2 y

 

dx

 

 

 

=

t

,

 

=

 

 

,

dx

xt

dx2

xt

 

 

 

 

 

 

230

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]