
- •П.А. Киселев, с.Б. Бокуть курс лекций по физической химии
- •Введение
- •Лекция 1. Газовые законы
- •1.1. Температура и нулевой закон термодинамики
- •1.2. Законы поведения идеальных газов: уравнение состояния идеального газа
- •1.3. Кинетическое уравнение газов
- •1.4. Уравнение состояния реальных (неидеальных) газов. Уравнение Ван-дер-Ваальса
- •1.5. Закон парциальных давлений Дальтона
- •Лекция 2. Первое начало термодинамики и термохимия
- •2.1. Вводная часть
- •2.2. Некоторые понятия, используемые в термодинамике
- •2.3. Формулировка первого начала термодинамики
- •2.4. Применение первого начала термодинамики к различным процессам
- •2.5. Теплота химической реакции (общие положения)
- •2.6. Закон Гесса
- •2.7. Следствие из закона Гесса
- •Лекция 3. Второе начало термодинамики и его применение
- •3.1. Основной смысл и значение второго закона термодинамики
- •3.2. Обратимые и необратимые процессы
- •3.3. Формулировка и математическое выражение второго начала термодинамики
- •3.4. Изменение энтропии изолированной системы
- •3.5. Статистическая природа второго начала термодинамики
- •Лекция 4. Третье начало термодинамики. Расчеты изменения энтропии при различных процессах
- •4.1. Формулировка третьего начала термодинамики
- •4.2. Абсолютные и стандартные значения энтропии
- •4.3. Расчеты изменения энтропии в различных процессах
- •1. Расчеты изменения энтропии при изотермических процессах
- •2. Расчет изменения энтропии в неизотермических процессах
- •3. Расчет изменения энтропии сложного процесса
- •4.4. Расчет изменения энтропии при протекании химического процесса
- •4.5. Критерии направления протекания процессов и достижения равновесных состояний в открытых и закрытых системах. Понятие об энергии Гиббса
- •Лекция 5. Химические реакции как открытые в термодинамическом смысле системы. Направление протекания химических реакций. Равновесные химические реакции
- •5.1. Понятие о химическом потенциале
- •5.2. Экзергонические и эндергонические реакции
- •5.3. Взаимосвязь энтальпийного и энтропийного факторов в качестве критерия самопроизвольного протекания химической реакции
- •5.4. Понятие о равновесии химической реакции. Обратимые и необратимые реакции
- •5.5. Уравнение изотермы химической реакции и вывод закона действующих масс
- •5.6. Зависимость константы химического равновесия от температуры
- •Лекция 6. Химическое равновесие в гетерогенных и гомогенных системах
- •6.1. Взаимосвязь химического потенциала с другими термодинамическими функциями
- •6.2. Летучесть
- •6.3. Идеальный раствор
- •6.4. Фазовая диаграмма содержит зоны, линии и тройную точку
- •6.5. Уравнение Клаузиуса-Клапейрона
- •6.6. Коллигативные свойства растворов
- •6.7. Понижение точки замерзания и повышение точки кипения растворов
- •6.8. Осмотическое давление
- •6.9. Растворы электролитов
- •Лекция 7. Растворы электролитов
- •7.1. Общие сведения о теории электролитической диссоциации
- •7.2. Сильные и слабые электролиты
- •7.3. Закон разведения
- •7.4. Сильные электролиты
- •7.5. Ионная сила
- •7.6. Произведение растворимости
- •7.7. Электролитическая диссоциация воды
- •7.8. Концентрация водородных ионов
- •7.9. Буферные растворы
- •7.10. Механизм действия буферных растворов
- •7.11. Буферная емкость
- •Лекция 8. Основные понятия химической кинетики
- •8.1. Химическая реакция
- •8.2. Механизм химической реакции
- •8.3. Исходные, конечные и промежуточные вещества
- •8.4. Глубина превращения реакции
- •8.5. Гомогенные и гетерогенные реакции
- •8.6. Скорость химической реакции
- •8.7. Измерение скорости реакции
- •8.8. Порядок реакции и константа скорости реакции
- •8.9. Молекулярность реакции
- •8.10. Количественные соотношения между скоростью реакции и концентрацией реагента
- •8.11. Реакция второго порядка
- •8.12. Уравнение скорости реакции третьего порядка
- •8.13. Уравнение скорости реакции нулевого порядка
- •8.14. Определение порядка реакции
- •8.15. Теоретические основы химической кинетики
- •8.15.1. Теория активных соударений
- •8.15.2. Теория активированного (переходного) комплекса (переходного состояния)
- •8.15.3. Вывод основного уравнения теории переходного состояния
- •8.15.4. Термодинамическая форма основного уравнения теории переходного состояния
- •8.15.5. Сравнение термодинамической формы основного уравнения теории переходного состояния с уравнением Аррениуса
- •Лекция 9. Основы кинетики и механизма ферментативных реакций. Гомогенный и гетерогенный катализ
- •9.1. Понятие катализа
- •9.2. Основы теории гомогенного катализа
- •9.3. Основы теории гетерогенного катализа
- •9.4. Ферменты как биологические катализаторы
- •9.5. Кинетика реакций, катализируемых ферментами
- •9.6. Физический смысл величин Km и Vmax
- •9.7. Уравнение Михаэлиса-Ментен и ферментативные механизмы
- •9.8. Общее уравнение скорости
- •Лекция 10. Электрохимия
- •10.1. Введение в электрохимию
- •10.2. Термодинамика электрохимических систем
- •10.3. Электродный потенциал
- •10.4. Двойной электрический слой на границе между металлом и раствором электролита
- •10.5. Зависимость плотности заряда от концентрации электролита
- •Лекция 11.Электродные и безэлектродные электрохимические системы
- •11.1. Правила записи эдс и электродных потенциалов электрохимических систем
- •11.2. Типы электродов
- •11.3. Диффузионный и межжидкостный потенциалы
- •На электродах протекают реакции
- •11.5. Концентрационные цепи
- •Лекция 12. Поверхностные явления и адсорбция
- •12.1. Общая характеристика поверхностных явлений
- •12.2. Поверхностные явления в дисперсных системах
- •12.3. Поверхностное натяжение и природа вещества
- •12.4. Термодинамика поверхностных явлений в однокомпонентных системах
- •12.5. Равновесие фаз при искривленной поверхности раздела. Капиллярность
- •12.6. Уравнение Томсона
- •12.7. Капиллярные явления
- •Лекция 13. Адсорбция
- •13.1. Уравнение адсорбции Гиббса
- •13.2. Обзор сорбционных явлений
- •13.3. Природа адсорбционного взаимодействия
- •13.4. Термическое уравнение адсорбции. Изотерма адсорбции
- •13.5. Мономолекулярная адсорбция и изотерма Ленгмюра
- •Литература
- •Содержание
Лекция 11.Электродные и безэлектродные электрохимические системы
11.1. Правила записи эдс и электродных потенциалов электрохимических систем
В соответствии с международным соглашением о знаках электродвижущих сил и электродных потенциалов любую электрохимическую систему записывают так: сначала записывается символ металла электрода, затем раствор, который находится с ним в контакте, далее раствор, который находится в контакте с другим электродом, а затем символ металла второго электрода. Символ металла электрода отделяют от символа раствора одной вертикальной чертой, а название растворов отделяют двумя вертикальными чертами, если полностью устранен диффузионный потенциал между ними, или одной пунктирной чертой, если диффузионный потенциал не устранен. В обозначении электрохимической системы слева записывают отрицательный электрод, справа – положительный электрод.
Например, медно-цинковый элемент:
(–) Zn|ZnSO4 ||CuSO4 |Cu(+) – при отсутствии диффузионного потенциала
и (–) Zn|ZnSO4 ||CuSO4 |Cu(+) – если диффузионный потенциал не устранен.
Величина ЭДС элемента всегда положительна. Поэтому при вычислении ЭДС из величины потенциала правого электрода вычитают величину левого электрода:
. (11.1)
Если известна концентрация раствора, то она указывается:
Ag | AgNO3 || AgNO3 | Ag .
C1 С2
Если электрод или раствор содержат несколько разных веществ, то их записывают, отделяя одно вещество от другого запятыми.
Так, водородный (платиново-водородный) электрод, соединенный с полуэлементом (электродом), представляющим собой медную пластинку, погруженную в раствор серной кислоты и сульфата меди, записывают так:
(-) H2,Pt|H2SO4 ¦CuSO4,H2SO4|Cu(+).
Можно не указывать все соединения, находящиеся в растворе, а только ионы, которые определяют величину потенциала электрода (потенциал-определяющие ионы).
Так, медно-цинковый элемент можно обозначить:
(-) Zn|Zn2+ ||Cu2+ |Cu(+) .
Величина электродного потенциала в соответствии с международным соглашением определяется как ЭДС электрохимической системы, в которой справа расположен данный электрод, а слева – стандартный водородный электрод, потенциал которого условно принят равным нулю.
Диффузионный потенциал при этом считается устраненным.
Отдельные электроды (полуэлементы) записывают так, чтобы вещества (ионы), которые находятся в растворе, были помещены слева:
Zn2+|Zn;Cl- |Cl2,Pt;Cl-|AgCl,Ag.
Электродные реакции записывают так, чтобы окисленные компоненты были слева, например:
Zn2+ + 2e- Zn; 1/2Cl2+e- Cl-; Fe3++e- Fe2+ .
11.2. Типы электродов
Электроды (полуэлементы) в зависимости от типа электродных реакций подразделяют на электроды первого и второго рода и окислительно-восстановительные (резокс-электроды). Электроды первого рода представляют собой металлические или газовые электроды, которые находятся в равновесии с соответствующими ионами в растворе, например цинковый электрод (цинк, погруженный в сульфат цинка), медный электрод (медь в растворе сульфата меди). Потенциалы этих электродов зависят лишь от активности (концентрации) в растворе ионов цинка или меди. К электродам первого рода относятся также газовые электроды, которые состоят из металлического проводника, контактирующего одновременно с газом, который пропускают через раствор, и с раствором, содержащим ионы этого газа (или ионы, образующиеся при взаимодействии газа с молекулами растворителя). Металлический электрод должен быть химически инертным относительно раствора и всех остальных составляющих электрохимической системы, чтобы исключить побочные электродные процессы. Очень часто таким металлом является платина. К газовым электродам относятся кислородный, хлорный, водородный электроды. На кислородном электроде протекает реакция
O2 + 2H2O+ 4e- 4OH-.
Потенциал кислородного электрода равен
. (11.2)
На хлорном электроде происходит реакция
.
Потенциал хлорного электрода равен
. (11.3)
Наиболее широкое применение находит водородный электрод. В этом случае в раствор кислоты погружается платиновый электрод. Хорошо очищенный водород непрерывно подводится и протекает через раствор, контактируя с платиной. На электроде происходит реакция
.
Потенциал водородного электрода следующий:
. (11.4)
Стандартный водородный
электрод представляет собой платиновый
проводник, насыщенный водородом при
давлении pH2 = 0,1 МПа,
погруженный в раствор с активностью
ионов водорода.
Как уже было сказано, член
условно принят за нуль отсчета. Поэтому
. (11.5)
относительно потенциала водородного электрода измерены стандартные потенциалы (25°С) для большого количества электродных реакций, что дает возможность решать различные электрохимические задачи.
При размещении стандартных электродных потенциалов для различных металлов так, чтобы их величины возрастали, получается ряд напряжений, известный из общего курса химии. Некоторые несоответствия между химическими свойствами металлов и величинами их стандартных электродных потенциалов связаны с тем, что последние зависят не только от активности металлов, но и от прочности солеватационной оболочки потенциал-определяющих ионов. Так, ионы лития из-за их малого размера прочно связаны с полярными молекулами воды, поэтому переход ионов лития из раствора в металл затруднен и его стандартный электродный потенциал отрицательнее потенциалов более активных металлов натрия и калия.
Электроды второго рода– это металлические электроды, на которые нанесен слой их труднорастворимых соединений (соли, оксиды или гидроксиды, погруженные в электролит, который содержит такой же анион, как и труднорастворимые соединения).
Эти электроды обратимы
по отношению к указанным анионам, т.е.
находятся с ними в термодинамическом
равновесии. Схематично такой электрод
можно записать так:
.
На электроде происходит реакция
MA+ze-M+
.
Потенциал такого электрода равен
. (11.6)
После преобразования получим:
. (11.7)
Концентрация
(активность) металла Ми твердой
фазыМАравны единице. Поэтому приТ=constпервый член
первой части – величина постоянная,
которую обозначим через(стандартный электродный потенциал).
Откуда
. (11.8)
Таким образом, величина потенциала электрода второго рода зависит только от концентрации анионов труднорастворимого соединения в растворе.
Величины потенциалов электродов второго рода сохраняются постоянными, хорошо воспроизводимы, и поэтому эти электроды используют в качестве стандартных электродов сравнения при измерении электродных потенциалов.
Наиболее широко известны электроды второго рода – каломельный,хлор-серебрянныйиртутно-сульфатный.
Схематично каломельный электрод можно записать так:
Cl-| Нg2Cl2,Hg,
где Hg2Cl2– каломель.
На электроде происходит реакция
Hg2Cl2+ 2e-2Hg+ 2Cl-
Потенциал электрода определяется только концентрацией ионов хлора. В практике используют каломельные электроды с насыщенным, нормальным и децинормальным растворами хлорида калия. Величины потенциалов этих электродов по водородной шкале приведены ниже.
В случае насыщенного раствора хлорида калия
. (11.9)
Для нормального раствора хлорида калия (C = 1N)
. (11.10)
Для децинормального раствора хлорида калия (C= 0,1N)
. (11.11)
Наиболее широкое распространение получил насыщенный каломельный электрод: он легко готовится, в нем автоматически поддерживается постоянная концентрация хлорида калия. Преимущество децинормального электрода заключается в существенно меньшей зависимости потенциала от температуры.
Хлор-серебрянный электрод представляет собой систему Cl- |AgCl,Ag. Его потенциал равен
; (11.12)
при 20 °С
. (11.13)
Ртутно-сульфатный электрод – это система SO42- |HgSO4,Hg.
При 20 °С его потенциал равен
. (11.14)
В принципе все электроды представляют собой окислительно-восстановительную систему. Однако принято называть окислительно-восстановительными электродами электроды, на которых происходят окислительно-восстановительные реакции, не сопровождающиеся фазовыми переходами. Металл в редокс-электроде не принимает участия в электродной реакции, а выполняет лишь функцию переносчика электронов (как и в газовых электродах).
Различают простые редокс-электроды, на которых происходит реакция, приводящая только к изменению заряда ионов:
Sn4+ + 2e- Sn2+
MnO4- + e- MnO42-.
Величины электродных потенциалов этих электродов определяются отношением активности окисленной формы ионов к восстановленной:
(11.15)
или
, (11.16)
где
и
– стандартные окислительно-восстановительные
потенциалы.
В реакциях на сложных редокс-электродах обычно принимают участие ионы водорода, ионы OH-или молекулы воды:
MnO4- + 8H3O+ + 5e- Mn2+ + 12 H2O;
SO42-+H2O+ 2e-SO32-+ 2OH-;
; (11.17)
. (11.18)
Величина окислительно-восстановительного потенциала является мерой восстановительной или окислительной способности раствора. Чем сильнее восстановительные свойства раствора, тем более отрицательный потенциал приобретает электрод, и наоборот.
Существуют также амальгамные электроды, которые представляют собой полуэлементы, в которых амальгама какого-либо металла находится в контакте с раствором, содержащим его ионы M2+M,Hg. Для большинства амальгам ртуть не принимает участия в электродной реакции, и соответственно потенциал амальгамного электрода определяется реакцией
MZ+ze-M.
Величина потенциала зависит от активности (концентрации) металла в амальгаме и от активности ионов металла в растворе:
. (11.19)
Амальгамные электроды широко используются в практике. Так, 12,5%-ная амальгама кадмия входит в состав полуэлемента нормального кадмиевого элемента (элемента Вестона), применяемого в качестве эталона при измерении ЭДС. Потенциал кадмиевого амальгамного электрода равен
. (11.20)