Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физическая химия.doc
Скачиваний:
284
Добавлен:
15.02.2016
Размер:
2.16 Mб
Скачать

Министерство образования Республики Беларусь

Международный государственный экологический университет им. А.Д. Сахарова

Факультет экологической медицины

Кафедра биохимии и биофизики

П.А. Киселев, с.Б. Бокуть курс лекций по физической химии

Минск

МГЭУ им.А.Д. Сахарова

2005

Авторы:

профессор кафедры биохимии и биофизики, д.х.н. П.А. Киселев,

зав. кафедрой биохимии и биофизики, к.б.н. С.Б. Бокуть.

Рецензент:

к.х.н., доцент И.Б. Бутылина

Рекомендовано Советом Международного государственного экологического университета им. А.Д. Сахарова, протокол № 4 от 24.12.2004 г.

Киселев П.А., Бокуть С.Б.

Курс лекций по физической химии / Киселев П.А., Бокуть С.Б. – Мн., 2005. – 142 с.

В курсе лекций рассматриваются основные вопросы физической химии: химическая термодинамика, фазовые равновесия, теория электролитической диссоциации и механизм действия буферных систем, коллигативные свойства растворов, химическая и ферментативная кинетика, электрохимия и природа электродных и неэлектродных процессов, особенности диффузии в биосистемах, поверхность раздела и ее свойства. Учебное пособие соответствует учебной программе дисциплины «Физическая и коллоидная химия» для студентов МГЭУ им. А.Д. Сахарова.

 Киселев П.А., Бокуть С.Б., 2005

Международный государственный экологический университет им. А.Д. Сахарова, 2005

Введение

Если в точных науках, например в физике, математические методы давно уже стали их неотъемлемой частью, то при изу­чении биологии и смежных с ней наук математические методы и физические законы используются еще недостаточно. Отсут­ствие интереса к математике со стороны биологов в прошлом частично оправдывалось традиционно качественным подходом к изучению биологических проблем и медленным развитием на­ших представлений о степени сложности живых систем. Можно надеяться, однако, что в самом недалеком будущем биологическая подготовка всех студентов будет непременно включать курс математического анализа, элементы которого, возможно, будут освоены еще в средней школе. Тогда будет значительно легче устанавливать связь между различными дисциплинами и во всех средних и высших учебных заведениях курс общей био­логии будут слушать студенты, уже вооруженные знаниями по физической химии. Но пока на это рассчитывать не приходится.

Льюис определял предмет физической химии как изучение того, что в науке наиболее интересно (сам он был физико-химиком). Надеясь на должное понимание этой точки зрения, мы начнем наше изложение с вопроса о различных типах физиче­ских законов. Поскольку физическая химия, а вместе с ней и биохимия могут рассматриваться как приложение законов фи­зики к химическим и биохимическим системам, такое начало логически вполне себя оправдывает.

Один из законов физики известен почти каждому – это за­кон сохранения энергии. Его иногда называют основным зако­ном природы, поскольку он вытекает не только из научного, но и из всего человеческого опыта. Многие философы, пытавшиеся отыскать метафизический смысл этого закона, в целом нахо­дили его достаточно надежным. Для всех неядерных реакций закон сохранения энергии, насколько мы знаем, остается справедливым в пре­делах ошибок эксперимента; пока не обнаружено ни одного исключения из него. Закон выполняется независимо от того, сколько молекул, частиц или компонентов содержит изучаемая система. Вместе с тем некоторые физические законы называют «статистическими» – они формулируются только по отношению к событиям, повторяющимся достаточно много раз. Законы этого типа легче всего проиллюстрировать известным примером с подбрасыванием монеты. Подбрасывая монету, мы можем быть уверены, что «орел» или «решка» выпадут в соотношении 50 : 50 только в том случае, если у нас хватит терпения подбрасывать ее достаточно много раз. Если мы 500 раз подбросим десять монет, то, согласно теории вероятности, одна «решка» и 9 «орлов» выпадут примерно в 10% случаев, а 5 «решек» и 5 «орлов» с наибольшей вероятностью выпадут 123 раза на 500 попыток. Такого типа вероятностные законы встречаются и в физике. Один из наиболее важных физических законов, толкования которого приносят философам немало беспокойства, гласит: все встречающиеся в природе системы с течением времени стремятся к наиболее неупорядоченному состоянию – как говорится, все в конце концов скатывается вниз. Такой закон, как и в случае с монетой, при малом числе событий может и не выполняться.

Вы можете заметить, что почти все физические законы сопровождаются довольно строгим указанием условий, в пределах которых они выполняются. Условия эти чаще всего выглядят вполне логично и естественно. Можно сослаться, например, на законы химического равновесия, согласно которым состояние равновесия зависит от температуры. Кроме того, в физической химии и биохимии часто оказывается выгодно упростить математическую формулировку некоторых общих законов; их применимость в результате заметно сужается, но зато неизмеримо возрастает их польза. Например, наиболее полезные уравнения, описывающие свойства растворенных веществ и их взаимодействие с растворителем, представляют собой упрощенный вариант общих уравнений, применимых лишь к случаю разбавленных растворов. В уравнениях, выражающих поведение разбавленных водных систем, мы можем заменять молярность на моляльность, подставлять молярные доли вместо молярности и делать многие другие удобные упрощения. Упрощенные законы часто называют «предельными законами». Впрочем, если подойти строго, то почти все физические законы являются «предельными», поскольку всем им присущи какие-то пределы применимости. Однако в последующем изложении под «предельными законами» мы будем подразумевать лишь те, которые возникают в результате достаточно радикальной математической хирургии.

Физические законы выводятся двумя способами: из экспериментальных наблюдений и в результате математического выражения неких основополагающих принципов. Теоретические выводы фундаментальных законов должны опираться на обобщения, вытекающие из экспериментальных наблюдений. В основе всех этих выводов лежит единый принцип строго научного подхода – научный метод, который проложил науке дорогу сквозь все невзгоды средневековья и придал ей нужную строгость и объективность.

Научный метод составляет самое существо современной науки, без него было бы невозможно существование науки и техники наших дней. Попробуем теперь чуть ближе взглянуть на этот важный во всех отношениях метод, на его возможности, требования и запреты. Тот, кого мы называем ученым, должен иметь определенный талант и быть готовым использовать научный метод – он должен уметь наблюдать, стремиться к анализу окружающих явлений и к объективной и честной оценке смысла своих наблюдений. На этом основаны все научные построения.

Вначале, наблюдая за поведением некоторой системы, ученый замечает, что при определенных условиях эта система ведет себя воспроизводимым образом; в результате у него появляется возможность предсказывать ее поведение. Тогда ученый, как правило, описывает поведение системы неким математическим уравнением, которое мы называем эмпирическим.

Любопытство ученого этим не удовлетворяется, и он задает вопрос: не связано ли наблюдаемое поведение системы с каким-либо фундаментальным свойством материи? В поисках ответа ему приходится сформулировать вопрос несколько иначе: нельзя ли придумать такую совокупность основных свойств материи, которая находилась бы в согласии с наблюдаемым поведением системы? Предположение о тех или иных свойствах материи именуются гипотезой.

Гипотезы подкрепляются определенной аргументацией и облекаются в соответствующую математическую форму. В конечном итоге выводится уравнение, позволяющее предсказывать поведение системы. Это уравнение сопоставляется с исходным эмпирическим уравнением, выведенным из непосредственных наблюдений. Теперь ученый должен проверить, в какой мере его общие построения согласуются с наблюдаемыми явлениями, так как научный метод исходит из того, что проникновение в фундаментальные свойства материи возможно лишь постольку, поскольку теоретические предсказания согласуются с экспериментальными наблюдениями.

Практически во всех случаях теоретические выводы ведут к постановке новых экспериментов, которые могут служить дальнейшей проверкой исходных предположений. Обычно ученый убеждается в том, что предсказываемое поведение материи несколько расходится с экспериментальными результатами, и ему приходится либо каким-то образом уточнять и усложнять прежние гипотезы, либо развивать совершенно новые идеи и представления. Процесс постановки новых экспериментов и уточнения основных понятий продолжается до тех пор, пока не наступит момент, когда дальнейшее усложнение теории в рамках имеющихся экспериментальных данных уже не дает никаких ощутимых выгод.

Следует указать, что иногда в предсказании поведения системы в равной степени полезными могут оказаться совершенно различные постулаты. Такую ситуацию иллюстрирует, например, случай, когда две разные теории привели нас к представлению о «двойственной природе» энергии излучения. Ученые не всегда настаивают на том, чтобы полезная система постулатов обязательно была единственно возможной; когда приемлемые черты обнаруживаются сразу у нескольких систем постулатов, то стремятся извлечь пользу из каждой.

Ученый постоянно стремится использовать доступный ему метод для развития сразу всех мыслимых объяснений одного и того же явления, однако истинным является, вероятно, лишь одно из них. Примеры, когда приходится прибегать сразу к двум или нескольким системам постулатов, говорят о том, что каждая из них содержит долю истины. По мере развития науки всегда появляется единая диалектическая по своей природе система представлений, поддающаяся математической интерпретации, способная выдержать все виды аргументации и подкрепленная экспериментальными доказательствами.

По мнению авторов, студенты, посвятившие себя науке, всегда должны проявлять интерес к возможному применению научных идей и представлений в других сферах человеческой деятельности – в экономике, политике, социологии. Мы вовсе не утверждаем здесь, что научный метод применим и к отношениям между людьми, однако мы уверены: в тех случаях, когда приходится выбирать правильное решение, нельзя обойтись без принципов, лежащих в его основе.