Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ІПЕМтаТ_Коцур / Тихомиров П.М. Расчет трансформаторов.doc
Скачиваний:
1290
Добавлен:
07.02.2016
Размер:
9.33 Mб
Скачать

1. Все понижающие трансформаторы с рпн.

2.     Повышающие трансформаторы 80 МВ•А - с ПБВ±2Х2,5 %; 125 - 400 МВ•А без регулировочных ответвлений.

3.     Значения потерь короткого замыкания указаны для средней ступени напряжения.

Глава вторая

КОНСТРУКЦИИ ОСНОВНЫХ ЧАСТЕЙ ТРАНСФОРМАТОРА

2.1. ОБЩАЯ КОНСТРУКТИВНАЯ СХЕМА ТРАНСФОРМАТОРА

В соответствии с ГОСТ 16110-82 трансформатором называется статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока. Трансформатор, предназначенный для преобразования электрической энергии в сетях энергосистем и потребителей электроэнергии, называется силовым. Если силовой трансформатор предназначен для включения в сеть, не отличающуюся особыми условиями работы, или для питания приемников электрической энергии, не отличающихся особыми условиями работы, характером нагрузки или режимом работы, то он называется силовым трансформатором общего назначения. Силовые трансформаторы, предназначенные для непосредственного питания потребительской сети или приемников электрической энергии, если эта сеть или приемники отличаются особыми условиями работы, характером нагрузки или режимом работы, называются трансформаторами специального назначения. К числу таких сетей я приемников относятся подземные шахтные сети и установки, выпрямительные установки, электрические дуговые печи и т. п.

В конструктивном отношении современный силовой масляный трансформатор можно схематически представить состоящим из трех основных систем - магнитной, системы обмоток с их изоляцией и системы охлаждения и вспомогательных систем - устройства регулирования напряжения, измерительных и защитных устройств, арматуры и др. В трансформаторах с воздушным охлаждением, как правило, отсутствуют измерительные и защитные устройства и арматура, а система охлаждения не выделяется в виде отдельных конструктивных единиц.

Конструктивной и механической основой трансформатора является его магнитная система (магнитопровод), которая служит для локализации в ней основного магнитного поля трансформатора. Магнитная система представляет собой комплект пластин или других элементов из электротехнической стали или другого ферромагнитного материала, собранных в определенной геометрической форме.

Большинство типов магнитных систем можно четко подразделить на отдельные части. В соответствии с этим делением в магнитной системе различают стержни - те ее части, на которых располагаются основные обмотки трансформатора, служащие непосредственно для преобразования электрической энергии, и ярма - части, не несущие основных обмоток и служащие для замыкания магнитной цепи, а в некоторых типах трансформаторов также для расположения обмоток, имеющих вспомогательное назначение.

Некоторые магнитные системы, например системы тороидальной формы, намотанные в виде кольца из ленты

Рис. 2.1. Плоская шихтованная магнитная система трехфазного трансформатора с обмотками: 1 - ярмо; 2 - стержень; 3 - сечение стержня; 4 - угол магнитной системы

или собранные из плоских круговых колец, отштампованных из тонколистовой стали, не подразделяются на стержни и ярма.

В магнитных системах, разделяющихся на стержни и ярма, при расчете параметров холостого хода трансформатора особо выделяются части, находящиеся в зоне сопряжения стержня и ярма и называемые углами магнитной системы. Понятие «угол» определяется как часть ярма магнитной системы, ограниченная объемом, образованным пересечением боковых поверхностей или их продолжений одного из ярм и одного из стержней. Магнитная система, изображенная на рис. 2.1, имеет шесть углов.

Практикой трансформаторостроения в течение десятилетий были выработаны различные схемы взаимного расположения отдельных частей магнитной системы. По этому признаку все магнитные системы разделяются на плоские - такие, в которых продольные оси всех стержней и ярм располагаются в одной плоскости (рис. 2.1), и пространственные, в которых оси стержней и ярм располагаются не в одной плоскости (см. рис. 2.6).

По взаимному расположению стержней и ярм плоские и пространственные магнитные системы могут также подразделяться на стержневые, броневые и бронестержневые. В течение ряда лет магнитные системы силовых трансформаторов выполнялись и в значительной части выполняются в настоящее время в виде плоских магнитных систем по типу рис. 2.1 путем сборки из плоских пластин электротехнической стали. В изображенной на рис. 2.1 магнитной системе трехфазного силового трансформатора ярма соединяют разные стержни, и каждое ярмо располагается со стороны торцов стержней. Такая магнитная система с торцовыми ярмами называется стержневой.

На рис. 2.2, а и б изображены магнитные системы, у которых каждый стержень имеет боковые ярма, соединяющие два разных конца этого стержня. У трансформаторов с такими магнитными системами боковые поверхности обмоток как бы закрыты броней, отчего магнитные системы этого типа при наличии не менее двух боковых ярм на каждом стержне получили название броневых.

На рис. 2.2, в показан промежуточный бронестержневой тип магнитной системы, у которой не все стержни имеют боковые ярма или каждый стержень имеет не более чем одно боковое ярмо.

Наибольшее распространение в практике трансформаторостроения получили плоские магнитные системы стержневого типа со ступенчатой формой поперечного сечения стержня, вписанной в окружность, и с обмотками в виде круговых цилиндров. Плоские бронестержневые системы и броневые системы по рис. 2.2, б, аналогичные по форме обмоток и сечения стержня системам стержневым, требуют несколько большего расхода электротехнической стали и применяются в некоторых типах трансформаторов большой мощности (более 100000 кВ•А) с целью уменьшения высоты трансформатора, а также в трансформаторах малой мощности (1-3 кВ•А).

Рис. 2.2. Броневые (а, 6) и бронестержневая (в) магнитные системы трехфазного (а) и однофазных трансформаторов (б, в):

/ — стержень, 2 — ярмо, 3 — обмотка

В последние годы в силовых трансформаторах мощностью до 6300 кВ•А находят все более широкое применение пространственные магнитные системы по рис. 2.6, а и б и других типов. Броневые магнитные системы по рис. 2.2, а при горизонтальном расположении стержней и ярм с обмотками прямоугольной формы применяются некоторыми иностранными фирмами для трансформаторов, предназначенных для питания электрических печей.

Магнитная система, в которой все стержни имеют одинаковые форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней, называется симметричной (рис. 2.2,6, в и 2.6). При отсутствии одного из этих признаков магнитная система называется несимметричной. Так трехфазная магнитная система, изображенная на рис. 2.1, несимметрична потому, что взаимное расположение ее среднего и крайних стержней по отношению к ярмам различно.

По способу сборки различают: шихтованные магнитные системы, ярма и стержни которых собираются впереплет из плоских пластин как единая цельная конструкция, навитые магнитные системы, все части которых изготовляются путем навивки из ленточной электротехнической стали, а затем скрепляются в единую конструкцию, и стыковые магнитные системы, ярма и стержни или отдельные части которых, собранные и скрепленные раздельно, при сборке системы устанавливаются встык и скрепляются специальными стяжными конструкциями или другими способами. В стыковых магнитных системах могут сочетаться части, собранные только из плоских пластин или из плоских пластин с навитыми частями.

Часто применяемый порядок сборки шихтованной стержневой магнитной системы показан на рис. 2.3, а. Сборка ведется на горизонтальном стенде путем чередования слоя пластин (обычно толщиной в две пластины, редко в три-четыре), разложенных по положению 1, со слоем пластин, разложенных по положению 2. В результате сборки после стяжки ярм прессующими балками и стержней бандажами получается остов трансформатора, не требующий каких-либо добавочных креплений.

На рис. 2.3, а показана сборка магнитной системы из пластин прямоугольной формы, образующих в углах системы так называемый прямой стык.

Рис. 2 3. Сборка трехфазных магнитных систем:

а — шихтованной из пластин прямоугольной формы; б — разрезной стыковой, навитой из лент, в — стыковой, собираемой из пластин прямоугольной формы

Рис. 2.4. Сборка магнитной системы трехфазного трансформатора мощностью 10000 кВ•А класса