Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ІПЕМтаТ_Коцур / Тихомиров П.М. Расчет трансформаторов.doc
Скачиваний:
1290
Добавлен:
07.02.2016
Размер:
9.33 Mб
Скачать

4. Толщина угловой шайбы 0,5—1 мм.

Наиболее употребительны схемы регулирования, показанные на рис. 4.10, а, в и г, при конструкции изоляции по рис. 4.11, а и схема на рис. 4.10, д без разрыва.

В обмотке ВН класса напряжения 35 кВ с ПБВ может применяться схема регулирования по рис. 4.10, г.

Рис. 4.10 принципиальные схемы регулирования напряжения обмотки ВН

Рис. 4.11. Конструкция изоляции в месте разрыва обмотки ВН

Защита обмоток трансформатора от импульсных перенапряжений осуществляется различными путями. Существенную роль в повышении импульсной прочности обмоток играет правильный выбор схемы расположения витков, слоев и катушек в сочетании с электрическими экранами, обеспечивающей наиболее благоприятное начальное распределение импульсного напряжения по обмотке и ограничивающей собственные колебания напряжения в обмотке.

К числу таких схем относится схема многослойной цилиндрической обмотки, наматываемой из провода круглого или прямоугольного сечения и широко применяемой для трансформаторов классов напряжения 6, 10 и 35 кВ мощностью до 80 000 кВ-А (рис. 4.12, а). При классе напряжения

Рис. 4.12. Схемы емкостной защиты обмоток:

а – обмотки 35кВ; б – обмотки 110-500 кВ (иностранные фирмы); в – обмотки 110кВ

35 кВ дополнительная защита многослойной цилиндрической обмотки осуществляется путем применения экрана в виде незамкнутого металлического цилиндра, вложенного под внутренний слой обмотки и соединенного электрически с линейным концом, подведенным к внутреннему слою обмотки. Экран из листа немагнитного металла толщиной 0,5 мм изолируется от внутреннего слоя обмотки обычной междуслойной изоляцией. В обмотках классов напряжения 6 и 10 кВ экранирование внутреннего слоя не применяется. Многими иностранными фирмами многослойная цилиндрическая обмотка из провода прямоугольного сечения применяется для трансформаторов мощностью десятки и сотни тысяч киловольт-ампер классов напряжения 110—500 кВ (рис. 4.12, б). Обмотка этого типа в сочетании с одним или двумя электростатическими экранами, присоединенными к линейному концу обмотки или к линейному и нейтральному концам, дает равномерное начальное распределение напряжения и обеспечивает хорошую грозозащиту трансформатора. От схемы на рис. 4.12, а эта схема отличается наполовину меньшим напряжением между соседними слоями. Применение многослойных обмоток для мощных трансформаторов затрудняется сложностью технологии их изготовления — большой затратой ручного труда на отбортовку междуслойной изоляции, состоящей из многих слоев кабельной бумаги.

В обмотках катушечных, непрерывных или собираемых из отдельно намотанных катушек, прибегают к экранированию начальных (у линейного конца) и иногда конечных (у нейтрали) витков и катушек обмотки фазы емкостными кольцами или (редко) экранирующими витками (рис. 4.12, в). Например, при классе напряжения ПО кВ и непрерывной обмотке в схему защиты входит кольцо с незамкнутой металлической обкладкой, изолированное снаружи кабельной бумагой и соединенное гальванически с линейным концом обмотки. Экранирующие витки — это незамкнутые витки из медного или алюминиевого провода, имеющие дополнительную изоляцию, располагаемые у начальных или конечных витков обмотки и соединенные гальванически с ее ближайшим концом.

В настоящее время защита обмоток от импульсных перенапряжений при классах напряжения от 220 кВ и выше выполняется путем сочетания емкостных колец с применением переплетенных катушечных обмоток, т. е. обмоток, в которых порядок последовательного соединения витков отличается от последовательности их расположения в катушках. Одна из схем переплетенной обмотки показана на рис. 4.13, а. Каждая катушка наматывается двумя параллельными проводами, а затем производится соединение этих проводов по схеме рис. 4.13, б. Возможны и другие способы переплетения витков обмотки.

Намотка переплетенной обмотки любого типа является более сложной и трудоемкой, чем намотка обычной непрерывной катушечной обмотки, эта обмотка требует увеличения электрической прочности изоляции витков и повышения плотности ее наложения, однако это усложнение технологии и увеличение стоимости обмотки окупается почти линейным начальным распределением импульсного напряжения и хорошей грозозащитной обмотки.

Рис. 4.13 Двойная катушка переплетенной обмотки с петлевой схемой соединения витков: а – расположение витков; б – схема соединения витков

В переплетенной обмотке отпадает необходимость в экранирующих витках, но используются емкостные кольца. Применение переплетенных обмоток в настоящее время является, повидимому, наилучшим методом защиты от импульсных перенапряжений для обмоток классов напряжения от 220 до 750 кВ.

Таблица 4.10. Изоляция входных витков и катушек, мм (непрерывная катушечная обмотка)

Класс напряжения, кВ

Испытательное напряжение, кВ

Первая катушка

Вторая катушка

Третья и четвертая катушки

Витков

Всей катушки

Витков

Всей катушки

Витков

Всей катушки

20

55

0,96

(1,06)

-

-

1,35

-

-

-

35

85

1,35

(1,50)

-

(1,50)

-

-

-

Ввод линейного конца в верхний конец обмотки

110

200

1,20

(1,35)

4,0

1,20

(1,35)

3,5

1,20

(1,35)

2,0

Ввод линейного конца в середину высоты обмотки

110

200

1,20

(1,35)

1,0

1,20

(1,35)

3,0

1,20

(1,35)

1,5

Примечания: 1. Усиленная изоляция при Uисп— 55 кВ делается на первой (линейный конец) и последней (нейтраль) катушках обмотки фазы, при Uисп=85 кВ — на двух первых и двух последних катушках, при Uисп— 200 кВ — только на двух первых.

2.   В обмотках классов напряжения 20 и 35 кВ два крайних канала между катушками вверху и внизу не менее 7 мм каждый.

3.   В многослойной цилиндрической обмотке класса напряжения 35 кВ с экраном пять последних витков у нейтрали на каждой ступени имеют усиленную изоляцию — один слой лакоткани ЛХММ вполуперекрышку.

4.  Изоляция витков дана на две стороны, изоляция катушек на одну.

5.   Вне скобок указана номинальная толщина изоляции витков. Размеры катушки рассчитываются по толщине изоляции, указанной в скобках.

При воздействии на обмотку волны перенапряжения с крутым фронтом первые катушки обмотки в начале процесса испытывают наибольшие перенапряжения. В отдельных случаях наблюдается скачок напряжения на витках, близких к нейтрали. Для того чтобы обезопасить эти катушки и витки от пробоя, их изоляция усиливается по сравнению с изоляцией всех остальных катушек (витков) обмотки,

В качестве усиленной изоляции применяется увеличенная изоляция между слоями, изоляция, целых катушек лакотканью или кабельной бумагой.

В обмотках классов напряжения 6, 10 и 15 (Uисп<55 кВ) усиленная изоляция, как правило, не применяется. Для обмоток классов напряжения 20 кВ и более (Uucn>=55 кВ) усиленная изоляция может быть выбрана по табл. 4.10. Усиленная изоляция несколько увеличивает внутренний перепад температуры во входных катушках. Во избежание этого рекомендуется в катушках с усиленной изоляцией уменьшать плотность тока, увеличивая сечение провода по сравнению с остальными катушками обмотки на 10—15 %. В обмотках из прямоугольного провода с общей толщиной изоляции провода и катушки до 1,5 мм на сторону сечение провода входных катушек может оставаться таким же, как и в других катушках обмотки.

В некоторых новых сериях трансформаторов класса напряжения 35 кВ с непрерывными катушечными обмотками ВН усиленная изоляция катушек у линейного и нейтрального концов обмотки не применяется.

Рис. 4.14 Отвод между обмоткой и стенкой бака

3. Изоляция отводов трансформатора. Отводы, т. е. проводники, соединяющие обмотки трансформатора между собой, с проходными изоляторами на крышке (вводами) и с переключателями, а также переключатели обычно располагаются в масле, в пространстве между обмоткой и стенкой бака или между ярмом и крышкой бака. Отводы и переключатели каждой обмотки должны быть надежно изолированы от бака, заземленных частей, крепящих остов (прессующие балки ярма, заземленные болты и т. д.), а также от всех частей, находящихся под напряжением, т. е. обмоток и других отводов. Типичный случай расположения отвода показан на рис. 4.14. При расчете изоляции следует проверять как размеры чистых масляных промежутков (s1, и s2 на рис. 4.14), так и возможные пути разряда по по­верхности изоляционных деталей, например деревянных деталей крепления отводов. Определение допустимых изо­ляционных расстояний и дополнительной

твердой изоляции отводов обмотки ВН производится по испытательному напря­жению отвода (обмотки, от которой идет отвод) при 50 Гц по табл. 4.11 для изо­ляции отвода от бака и других заземлен­ных деталей и от собственной (наруж­ной) обмотки. Изоляция отводов внут­ренних обмоток НН и СН от стенки ба­ка и заземленных деталей выбирается по табл. 4.11, а от наружной обмотки ВН по табл. 4.12.

В этих таблицах приведены ориенти­ровочные основные размеры изоляцион­ных промежутков, которые могут быть приняты в расчете при предварительном определении внутренних размеров бака трансформатора.

В табл. 4.11 и 4.12 минимально допустимый масляный промежуток определяется как сумма минимального изоля­ционного промежутка и суммарного допуска на изготовле­ние соответствующих деталей трансформатора. Найденный по таблицам допустимый промежуток s следует принимать как чисто масляный промежуток в свету между изоляцией отвода и соответствующей деталью или ее изоляцией. В том случае, если часть изоляционного промежутка заполнена изоляционными деталями, по поверхности которых может пройти путь разряда, эквивалентный чисто масляный про­межуток, мм, определяется по формуле

(4.2)

где Sм — действительный чисто масляный промежуток, мм; Sд — длина пути разряда по поверхности дерева, мм; Sт,и — длина пути разряда по поверхности твердой изоля­ции: электроизоляционного картона, кабельной бумаги, бумажно-бакелитовых изделий, гетинакса, мм.

Найденное по (4.2) s должно быть не меньше, чем опре­деленное по табл. 4.11 или 4.12.

Для отводов с Uисп<=35 кВ может применяться медный или алюминиевый провод, изолированный кабельной бума­гой или бумажно-бакелитовыми трубками. При рабочем напряжении отвода до 1 кВ (испытательное напряжение 5 кВ) провод (шина) отвода собственной изоляции не имеет.

В трансформаторах класса напряжения 110 кВ при рас­положении отводов между наружной обмоткой и стенкой бака могут быть два случая. В трансформаторах с ПБВ, если регулировочные витки не выведены в отдельный концентр, внешняя обмотка ВН имеет испытательное напря­жение 200 кВ и расстояния отводов ВН от стенки бака или собственной обмотки выбираются по этому напряжению по табл. 4.11, а расстояния отводов, идущих от обмоток СН и НН до обмотки ВН, выбираются по табл. 4.12.

Таблица 4.11. Минимально допустимые изоляционные расстояния от отводов до заземленных частей

Испытательное

напряжение отвода, кВ

Толщина изоляции на одну сторону, мм

Диаметр стержня, мм

Расстояние от гладкой стенки бака или собственной обмотки, мм

Расстояние от заземленной части острой формы, мм

SИ

SК

S

SК

S

До 25

0

<6

15

10

25

15

5

20

0

>6

12

10

22

12

5

17

2

-

10

10

20

10

5

15

35

0

<6

23

10

33

20

5

25

0

>6

18

10

28

17

5

22

2

-

10

10

20

12

5

17

45

0

<6

32

10

42

28

5

33

0

>6

27

10

37

25

5

30

2

-

15

10

25

18

5

23

55

0

<6

40

10

50

33

5

38

0

>6

35

10

45

32

5

37

2

-

22

10

32

25

5

30

85

2

-

40

10

50

45

5

50

4

-

30

10

40

37

5

42

6

-

25

10

35

35

5

40

100

5

-

40

10

50

45

10

55

200

20

12

75

20

95

160

10

170*

20

12

75

20

95

105

10

115*

*Заземленная часть не изолирована.

**Заземленная часть изолирована щитом из электроизоляционного картона толщиной 3 мм

Таблица 4.12. Минимально допустимые изоляционные расстояния от отвода до обмотки

Испытательное напряжение

Толщина изоляции на одну сторону, мм

Изоляционное расстояние отвода Sи, мм

Суммарный допуск Sк, мм

Минимальное расчетное расстояние, S, мм

обмотки

отвода

до входных катушек

до основных катушек

до входной катушки

до основных катушек

До 25

До 25

Нет

-

15

10

-

25

2

-

10

10

-

20

35

До 35

Нет

-

23

10

-

33

2

-

10

10

-

20

55

До 35

Нет

-

40

10

-

50

2

-

20

10

-

30

85

До 35

Нет

-

20

10

-

30

2

-

80

10

-

90

200

До 100

3

205

230

20

225

250

6

150

170

20

170

190

8

125

140

20

145

160

200

200

20

80

90

15

95

105

В транс­форматорах с РПН наружной частью обмотки ВН являет­ся обмотка тонкого регулирования, испытательное напря­жение которой равно 100 кВ. Расстояние линейного отвода обмотки ВН при этом выбирается, как для отвода с испы­тательным напряжением 200 кВ, вблизи обмотки с испыта­тельным напряжением 200 кВ по табл. 4.12. Расстояния отводов СН и НН от регулировочной части обмотки ВН выбираются, как для отводов с испытательным напряже­нием 100 кВ по табл. 4.11.

При переходе через деревянные детали отводы с Uисп= 25 и 35 кВ, не имеющие собственной изоляции, дол­жны быть изолированы картоном толщиной 2 мм на сто­рону; отводы обмоток с UИСП = 200 кВ получают в этом слу­чае дополнительную изоляцию на сторону 6 мм.

Отвод от внутренней обмотки трансформатора (обычно обмотка НН и СН) в некоторых случаях может рас­полагаться в осевом канале между обмотками или между обмоткой и стержнем. При выходе в пространство между активной частью трансформатора и баком такой или лю­бой другой отвод от внутренней обмотки должен пройти между наружной обмоткой и прессующей балкой ярма (рис. 4.15). Изоляция отвода в этом случае определяется испы­тательным напряжением при частоте 50 Гц. Отвод изоли­руется кабельной бумагой или лакотканью и дополнительно защищается коробкой из элек­троизоляционного картона.

Рис. 4.15 Вывод концов от обмотки

Размеры изоляции и минималь­но допустимые расстояния оп­ределяются по испытательно­му напряжению той обмотки, от которой идет отвод, если ее напряжение выше напряжения другой обмотки или если опре­деляется изоляция отвода от заземленной детали. При определении изоляции отвода, лежащего в осевом канале, от другой обмотки толщина покрытия отвода определяется по испытательному напряжению обмотки, от которой идет от­вод, а расстояние до другой обмотки — по наибольшему из двух испытательных напряжений обмоток. Для определения размеров изоляции и минимальных расстояний отводов, расположенных в осевых каналах, можно пользоваться табл. 4.13, 4.14 и рис. 4.16

Таблица 4.13. Минимальное расстояние от внутренних отводов до других обмоток и заземленных деталей

Испытательное напряжение на промежутке, кВ

До 25

35

45

55

85

200

230

Расстояние α от металла до соседней обмотки или стержня, мм

9

12

15

19

27

55

60

Таблица 4.14 Толщина изоляции на внутренних отводах

Испытательное напряжение обмотки, от которой идет отвод, кВ

Толщина изоляции на одну сторону, δи, мм

Толщина коробки из картона δк, мм

До 25

1,5

2.5

25

3

2.5

45

4

2.5

85

8

2Х2,5

Рис. 4.16. Изоляция отводов в осевых каналах обмоток

Изоляция в месте выхода отвода между обмоткой ВН и прессующей балкой ярма (рис. 4.15) может быть опреде­лена по табл. 4.13 и 4.14 при условии, что коробка из элек­троизоляционного картона укладывается с двух сторон — со стороны обмотки ВН и со стороны балки толщиной δк— на каждой стороне.