Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ІПЕМтаТ_Коцур / Тихомиров П.М. Расчет трансформаторов.doc
Скачиваний:
1290
Добавлен:
07.02.2016
Размер:
9.33 Mб
Скачать

Напряжения короткого замыкания в

Трехобмоточном трансформаторе.

Распределение поля рассеяния при

Нагрузке двух крайних обмоток і и іі.

В последнем случае средняя обмотка не имеет собственного поля рассеяния, но находится в магнитном поле с постоянной по ширине обмотки индукцией, созданном двумя крайними обмотками (рис. 7.4). Это поле вызывает в средней обмотке потери от вихревых токов РвІІ, Вт, примерно в 3 раза большие, чем при участии этой обмотки в номинальном двухобмоточном режиме. Эти потери могут выть рассчитаны по формуле

(7.27)

где kд,к - коэффициент добавочных потерь, рассчитанный для средней обмотки по (7.11) при k=n (n– число проводов обмотки в радиальном направлении); РоснІІ - основные потери в средней обмотке при токе, соответствующем 100% -ной номинальной мощности трансформатора.

Расчет потерь в отводах для трехобмоточного трансформатора проводится так же, как и для двухобмоточного, отдельно для каждой из трех обмоток, при токе, соответствующем 100 %-ной номинальной мощности.

Потери в стенках бака и стальных деталях конструкции определяются для трех случаев нагрузки трансформатора ВН - СН, ВН - НН и СН - НН по (7.26) для соответствующих значений uр.

Полные потери короткого замыкания для каждой пары обмоток трехобмоточного трансформатора могут быть подсчитаны по (7.1). При этом для каждой пары обмоток должно быть подставлено свое значение Рб, а при определении потерь пары крайних обмоток І и ІІІ по рис. 7.4 прибавлены добавочные потери в средней обмотке РвІІ, найденные по (7.27) .

Расчет потерь короткого замыкания двухобмоточного автотрансформатора проводится так же, как для двухобмоточного трансформатора для токов обмоток І1 и І2. При этом Рб рассчитывается для расчетного напряжения uк,р (§ 3.2). При расчете потерь для трехобмоточного автотрансформатора с автотрансформаторной связью двух обмоток и трансформаторной связью между этими обмотками и обмоткой III следует учитывать замечания, изложенные в § 7.1 (расчет потерь для трехобмоточных трансформаторов) и указания § 3.2 (расчет автотрансформаторов).

7.2. Расчет напряжения короткого замыкания

Напряжением короткого замыкания двухобмоточного трансформатора называется приведенное к расчетной температуре напряжение, которое следует подвести при номинальной частоте к зажимам одной из обмоток при замкнутой накоротко другой обмотке, чтобы в обеих обмотках установились номинальные токи. При этом переключатель должен находиться в положении, соответствующем номинальному напряжению.

Напряжение короткого замыкания определяет падение напряжения в трансформаторе, его внешнюю характеристику и ток короткого замыкания. Оно учитывается также при подборе трансформатора для параллельной работы.

В трехобмоточном трансформаторе напряжение короткого замыкания определяется подобным же образом для любой пары его обмоток при разомкнутой третьей обмотке. Поэтому трехобмоточный трансформатор имеет три различных напряжения короткого замыкания. Для всех трансформаторов напряжение короткого замыкания и его составляющие принято выражать в процентах номинального напряжения, а активную составляющую определять для средней эксплуатационной температуры обмоток 75 °С для всех масляных и сухих трансформаторов с изоляцией классов нагревостойкости А, Е, В. Для трансформаторов с изоляцией классов F, Н, С расчетная температура 115°С. Активная составляющая напряжения короткого замыкания, В, может быть записана так: Uа=rkIном, где rk - активное сопротивление короткого замыкания трансформатора, приведенное к одной из его обмоток, с учетом добавочных потерь, в обмотках, потерь в отводах и металлических конструкциях; Iном - номинальный ток обмотки, к числу витков которой приведено сопротивление rk=r1+r2.

 Выражая активную составляющую в процентах номинального напряжения, получаем

Умножая числитель и знаменатель на число фаз m и номинальный фазный ток Iном получаем формулу, справедливую для трансформаторов с любым числом фаз:

(7.28)

где Pк - потери короткого замыкания трансформатора, Вт; S - номинальная мощность трансформатора, кВ·А. Для трехобмоточного трансформатора S - наибольшая из мощностей трех обмоток (100 %); для автотрансформатора S=Sтип - типовая мощность, если нужно получить расчетное значение uа,р, и S=Sпрох - проходная мощность, если нужно получить сетевое значение uа,с.

Реактивная составляющая напряжения короткого замыкания, В, может быть записана так: UркIном, где хк12 - реактивное сопротивление короткого замыкания трансформатора, приведенное к одной из его обмоток. Выражая реактивную составляющую напряжения в процентах, получаем

(7.29)

Из общей теории трансформаторов известно, что реактивное сопротивление трансформатора для простейшего случая взаимного расположения концентрических обмоток по рис. 7.5 при равной высоте обмоток и равномерном распределении витков по их высоте может быть представлено в виде (7.30). Это выражение учитывает продольное (осевое) поле рассеяния обмоток, предполагая все индукционные линии в пределах высоты обмотки прямыми, параллельными оси обмотки с поправкой на отклонение индукционных линий от этого направления вблизи торцов обмотки, учитываемое коэффициентом kр:

(7.30)

Рис. 7.5. Поле рассеяния двух концентрических обмоток.

Подставив xk в (7.29) и заменив в этом выражении Uном на uвω, получим

(7.31)

Отношение πd12/l=β является одним из основных соотношений, определяющих распределение активных материалов в трансформаторе. Введя это обозначение и заменив в числителе выражения (7.31) и число витков ω=Uн/uв, получим

(7.32)

Ширина приведенного канала рассеяния ар, м, в (7.30) - (7.32) в тех случаях, когда радиальные размеры обмоток а1 и а2 равны или мало отличаются друг от друга (в трансформаторах мощностью S<10000 кВ·А), может быть принята равной

При расчете трансформаторов мощностью от 10000 кВ·А следует учитывать неравенство размеров а1 и а2 и определять ар по формуле

где d12 - средний диаметр канала между обмотками, м; Dср1 и Dcр2 - средние диаметры обмоток, м.

При расчете uр по (7.31) и (7.32), а также при всех дальнейших расчетах следует пользоваться реальными размерами рассчитанных обмоток трансформатора (а1, а2, a12, d12, l), а не приближенными значениями β и ар, найденными при определении основных размеров трансформатора. Весь расчет напряжения короткого замыкания проводится для одного стержня трансформатора. Поэтому при пользовании формулами для определения uр при расчете как трехфазного, так и однофазного трансформатора следует подставлять в эти формулы ток, напряжение и мощность, а также число витков обмотки одного стержня для номинального режима.

Коэффициент kр, учитывающий отклонение реального поля рассеяния от идеального параллельного поля, вызванное конечным значением осевого размера обмоток l по сравнению с их радиальными размерами (а12, а1, a2), для случая расположения обмоток по рис. 7.5 может быть подсчитан по приближенной формуле

(7.33)

или более простой

где σ = (а121+a2)/(πl).

Обычно kр при концентрическом расположении обмоток и равномерном расположении витков по их высоте колеблется в пределах от 0,93 до 0,98. Равномерное распределение витков по высоте каждой обмотки при равенстве высот обеих обмоток является наиболее рациональным. При этом осевые силы в обмотках при аварийном коротком замыкании трансформатора будут наименьшими. Речь идет о равномерном распределении витков, в которых протекает электрический ток. При отсутствии тока в части витков обмотки эти витки с точки зрения образования магнитного поля рассеяния являются отсутствующими.

Неравномерное распределение витков, нагруженных током по высоте бывает вынужденным, например, при размещении в середине высоты обмотки ВН с ПБВ регулировочных витков, отключаемых при регулировании со ступени+5 до ступени -5 % номинального напряжения (рис. 7.6, а). Чрезвычайно редко умышленно допускают неравенство высот обмоток по рис. 7.6, 6 или в. В трансформаторах с РПН витки каждой ступени регулирования обычно располагаются по всей высоте обмотки (см. рис. 6.9).

Реальное поле рассеяния обмоток для случая выключения части витков одной из обмоток по рис. 7.6, а может быть в упрощенном виде представлено в виде суммы двух полей: продольного, созданного полным числом витков обмоток с током, и поперечного, вызванного током витков, нескомпенсированных вследствие разности высот обмоток.

Рис. 7.6. Различные случаи взаимного расположения обмоток