
- •Расчёт трансформаторов предисловие
- •Глава первая общие вопросы проектирования трансформаторов
- •1.1. Современные тенденции в производстве трансформаторов в ссср
- •1.2. Основные материалы, применяемые в трансформаторостроении
- •1.3. Экономическая оценка рассчитанного трансформатора
- •2. Цены на сталь марок 3404, 3405 и 3406 составляют соответственно 833, 902 и 939 руб. За 1 т.
- •1.4. Стандартизация в трансформаторостроении
- •2. Знаком «**» отмечены параметры короткого замыкания для трансформаторов 25 – 250 кВа при схеме соединения у/zн - 11 и для трансформаторов 400 – 630 кВа при схеме д/ун –11.
- •3. Трансформаторы с рпн мощностью 400 и 630 кВа и напряжением нн 0,4 и 0,69 кВ изготовляются с потерями короткого замыкания на 10 % больщими, чем указано в таблице.
- •3. Значения потерь и напряжения короткого замыкания указаны на основном ответвлении.
- •1. Все понижающие трансформаторы с рпн.
- •Напряжения 110 кВ на специальном стенде
- •Однофазные: а — стержневой; б — броневой; в и г — бронестержневые с расщеплением мощности между стержнями; трехфазные; д — стержневой; е — бронестержневой; ж — броневой; з — навитой стержневой
- •С открытыми дверцами кожуха
- •2.2. Выбор марки стали и вида изоляции пластин
- •2. В скобках приведены справочные данные, ненормируемые гост 21427.1-83
- •Углу магнитной системы: а — прямой стык; 6 — косой стык
- •1. При прессовке стержней путем расклинивания с внут.Ренней обмоткой (до 630 кВ•а), а также в навитых элементах пространственных магнитных систем k3 , полученное из таблицы, уменьшить на 0,01.
- •2. По этой таблице можно определить также значения k3 для стали тех же толщин, выпускаемой иностранными фирмами.
- •3. При использовании листовой холоднокатаной стали толщиной 0,35 мм уменьшить k3, полученное из таблицы, на 0,01 дополнительно к прим. 1.
- •1. 1. В магнитных системах трансформаторов мощностью от 100 000 кВ-а и более допускается индукция до 1,7 Тл.
- •2. 1, При горячекатаной стали в магнитных системах масляных трансформато. Ров индукция до 1,4—1,45, сухих — до 1,2—1,3 Тл.
- •2.3. Конструкции магнитных систем силовых трансформаторов
- •1. В коэффициентеkкр учтено наличие охлаждающих каналов в сечении стержня.
- •2. При использовании таблицы для однофазного или трехобмоточного трансформатора его мощность умножить на 1,5.
- •3. Для пространственной магнитной системы по рис. 2.6, а значениеkкр полученное из таблицы, уменьшить на 0,02.
- •1. В коэффициенте kкручтено наличие охлаждающих каналов в сечении стержня.
- •3. При использовании таблицы для однофазного трансформатора его мощность умножить на 1,5.
- •Охлаждающих каналов. Трехфазные трансформаторы
- •1. В масляных трансформаторах ширина продольного камола 6, поперечного - 10 мм.
- •2. В сухих трансформаторах ширина продольного канала 20 мм.
- •Глава третья расчет основных размеров трансформатора
- •3.1. Задание на проект и схема расчета трансформатора
- •Глава третья расчет основных размеров трансформатора
- •3.1. Задание на проект и схема расчета трансформатора
- •3.2. Расчет основных электрических величин трансформаторов и автотрансформаторов
- •3.3. Основные размеры трансформатора
- •3.4. Методы расчета трансформаторов. Основы обобщенного метода
- •3.5. Проектирование отдельного трансформатора по обобщенному методу
- •2. Для однофазных трансформаторов определять kд по мощности 1,5 s.
- •3.7, Ориентировочные значения со, ссти kо,с в формулах (3.53) и (3.54)
- •3.6. Анализ изменения некоторых параметров трансформатора с изменением β (пример расчета)
- •3.7. Определение основных размеров трансформатора
- •Глава четвертая изоляция в трансформаторах
- •4.1. Классификация изоляции в трансформаторах
- •4.2. Общие требования. Предъявляемые к изоляции трансформатора
- •4.3. Электроизоляционные материалы, применяемые в трансформаторостроении
- •4.4. Основные типы изоляционных конструкции
- •4.5, Определение минимально допустимых изоляционных расстоянии для некоторых частных случаев (масляные трансформаторы)
- •4. Толщина угловой шайбы 0,5—1 мм.
- •4.6. Определение минимально допустимых изоляционных расстояний в сухих трансформаторах
- •Глава пятая выбор конструкции обмоток трансформаторов
- •5.1. Общие требования, предъявляемые к обмоткам трансформатора
- •5.2 Конструктивные детали обмоток и их изоляция
- •2. Без скобок указана номинальная толщина изоляции. Размеры катушек считать по толщине изоляции, указанной в скобках.
- •2. Для промежуточных значений диаметра провода и толщины изоляции можно пользоваться линейной интерполяцией.
- •5.3. Цилиндрические обмотки из прямоугольного провода
- •5.4. Многослойные цилиндрические обмотки из круглого провода
- •5.5. Винтовые обмотки
- •5.6. Катушечные обмотки
- •5.7. Выбор конструкции обмоток
- •3. Плотность тока в обмотках из транспонированного провода выбирается так же, как и для медного или алюминиевого провода.
- •2. Плотность тока в обмотках из алюминиевой ленты выбирается, как для алюминиевого провода.
- •Глава шестая расчет обмоток
- •6.1. Расчет обмоток нн
- •6.2. Регулирование напряжения обмоток вц
- •6.3. Расчет обмоток вн
- •Расчет многослойной цилиндрической обмотки из круглого провода (рис. 6.10)
- •Расчет многослойной цилиндрической обмотки из прямоугольного провода
- •Расчет непрерывкой катушечной обмотки (рис. 6,12)
- •6.4. Примеры расчета. Расчет обмоток Трансформатор тм-1600/35. Вариант im— медные обмотки (продолжение примера расчета § 3.6.)
- •Трансформатор тм-1600/35. Вариант iIа — алюминиевые обмотки (продолжение примера расчета § 3.6)
- •Глава седьмая расчет параметров короткого замыкания
- •7.1. Определение потерь короткого замыкания
- •Основные потери в обмотках
- •Добавочные потери в обмотках.
- •(Стрелкой показано направление индукционных линий поля рассеяния обмотки Фр)
- •Потери в стенках бака и других стальных деталях трансформатора.
- •Напряжения короткого замыкания в
- •Трехобмоточном трансформаторе.
- •Распределение поля рассеяния при
- •Нагрузке двух крайних обмоток і и іі.
- •7.2. Расчет напряжения короткого замыкания
- •Трансформатора.
- •Середине высоты на две фиктивные обмотки.
- •7.3. Определение механических сил в обмотках и нагрева обмоток при коротком замыкании.
- •Изгибе; в – потеря устойчивости внутренней обмоткой.
- •Из электрокартонных шайб, 3-ярмовая
- •Изоляция, 4-стальное разрезное кольцо
- •Или неразрезное неметаллическое
- •Кольцо, 5- прессующий винт.
- •7.4. Примеры расчета. Расчет параметров короткого замыкания Трансформатор типа тм-1600/35. Вариант 1м - медные обмотки
- •Типа тм-1600/35. Вариант Iм, медные обмотки:
- •Up (меньшее значение lx) и осевых механических сил (большее значение lx); б – распределение осевых механических сил.
- •Трансформатор типа тм-1600/35. Вариант ііа- алюминиевые обмотки
- •Глава восьмая. Расчет магнитной системы трансформатора
- •8.1. Определение размеров магнитной системы
- •Плоской магнитной системы.
- •Пространственной магнитной системы по (8.16)
- •Пространственной магнитной системы по рис. 2.6, а.
- •Магнитной системы по рис. 2.6,б
- •8.2. Определение потерь холостого хода трансформатора
- •Потери в холоднокатаной стали при прямых и косых стыках.
- •Системе; б – в шихтовой магнитной системе.
- •Пространственной магнитной системе:1 - по пакетам стержня;2 - по кольцевым пакетам (слоям) ярма.
- •Пространственной магнитной системы (1-я и 3-я гармонические, результирующая кривая)
- •8.3. Определение тока холостого хода трансформатора
- •Магнитной системе:1 - верхнее ярмо; 2 – верхний немагнитный зазор; 3 - немагнитная прокладка;
- •Магнитным клеем; 6 - крестообразная немагнитная прокладка; 7 - нижнее ярмо.
- •8.4. Примеры расчета. Расчет магнитной системы трансформатора
- •Расчет потерь холостого хода по § 8.2.
- •Расчет тока холостого хода по § 8.3.
- •Трансформатор типа тм-1600/35. Вариант ііа - алюминиевые обмотки Определение размеров магнитной системы и массы стали по § 8.1.
- •Алюминиевые обмотки:а - сечения стержня и ярма;
- •Расчет потерь холостого хода по § 8.2.
- •Расчет тока холостого хода по § 8.3
- •Глава девятая тепловой расчет трансформатора
- •9.1. Процесс теплопередачи в трансформаторе
- •Внутреннего перепада температуры;б – распределение перепада температуры по сечению обмотки
- •И направление конвекционных токов масла в трансформаторе с трубчатым баком:1 - обмотка; 2 - масло в баке; 3 - стенка трубы
- •Для гладкого и трубчатого баков и бака с радиаторами.
- •Трансформаторного масла с изменением его температуры
- •Масла трансформатора и ее превышения над температурой воздуха при изменении температуры охлаждающего воздуха.
- •9.2. Краткий обзор систем охлаждения трансформаторов
- •9.3. Нормы предельных превышений температуры
- •9.4. Порядок теплового расчета трансформатора
- •9.5. Поверочный тепловой расчет обмоток
- •9.6. Тепловой расчет бака
- •2. Минимальные расстояния осей фланцев радиатора от нижнего и верхнего срезов стенки бака с1ис2— соответственно 0,085 и 0,10 м.
- •Числом труб 1x2x16-32
- •9.7.Окончательный расчет превышений температуры обмоток и масла
- •9.8. Приближенное определение массы конструктивных материалов и масла трансформатора
- •9.9. Примеры расчета тепловой расчет трансформатора типа тм-1600/35
- •Глава десятая
- •Расчет основных электрических величин и определение изоляционных расстояний
- •Расчет обмотки нн (по § 6.3)
- •Расчет обмотки вн (по § 6.3)
- •Расчет параметров короткого замыкания
- •Расчет напряжения короткого замыкания (по § 7.2)
- •Расчет магнитной системы {по § 8.1—8.3)
- •Тепловой расчет трансформатора
- •10.2. Пример расчета обмоток трансформатора типа
- •10.3. Пример расчета трехфазного двухобмоточного трансформатора типа трдн-63000/110, 63 000 кВ·а, с рпн и пониженной массой стали магнитной системы
- •Глава одиннадцатая анализ влияния исходных данных расчета на параметры трансформатора
- •11.1. Влияние индукции на массы активных материалов и некоторые параметры трансформатора
- •11.2. Влияние потерь короткого замыкания, коэффициента заполнения kС и изоляционных расстояний на массу и стоимость активных материалов трансформатора
- •Глава двенадцатая проектирование серий трансформаторов
- •12.1. Выбор исходных данных при проектировании серии
- •12.2. Применение обобщенного метода к расчету серии трансформаторов
- •12.3. Выбор оптимального варианта при расчете серии трансформаторов
Расчет непрерывкой катушечной обмотки (рис. 6,12)
Ориентировочное сечение витка находится по (6.34). К этому сечению витка по сортаменту обмоточного провода (табл. 5.2) подбираются подходящие сечения прямоугольного провода — одно или два — четыре одинаковых сечения. Больший размер провода b при этом не должен превосходить предельный размер, найденный по допустимому значению по (5.6) или (5.7).
Выбранные размеры записываются так:
Марка провода ×
Число параллельных проводов ×
т.е.
Марка провода×nв2·.
Принятое сечение провода П''2, мм2.
Полное сечение витка, м2,
П2= nв2П''210-6.
Плотность тока, А/м2,
J2= I2/ П2. (6.62)
Рис. 6.12. Непрерывная катушечная обмотка
Обычно нужному сечению витка П'2 в сортаменте обмоточного провода соответствует несколько сечений провода с различным соотношением сторон b/а, что дает возможность широкого варьирования при размещении витков в катушке. Для получения более компактной конструкции обмотки рекомендуется выбирать из сортамента более крупные сечения при меньшем числе параллельных проводов и сечения с большим возможным размером b. При этом должны соблюдаться следующие требования:
общее число катушек должно быть четным, число различных видов катушек не более четырех;
рабочее напряжение одной катушки при классе напряжения до 35 кВ не должно превосходить 800—1000 В; при классе напряжения ПО кВ напряжение одной катушки может достигать 1500 - 1800 В, а при классе 220 кВ — 2500—3000 В;
при номинальном напряжении ВН 20, 35 кВ и выше все витки, служащие для регулирования напряжения, и витки с усиленной изоляцией должны быть размещены в отдельных катушках; катушки, содержащие различные числа витков или отличающиеся размерами или изоляцией, при расчете обычно для удобства обозначаются различными буквами;
число витков в катушке может быть целым или дробным; в последнем случае знаменателем дроби должно быть число реек по окружности обмотки;
общая высота обмотки (осевой размер) l2 после сушки и опрессовки должна совпадать с высотой обмотки НН l1.
Высота катушки hкат в этой обмотке равна большему размеру провода в изоляции b'.
Входные витки (катушки) обмотки ВН при ее номинальном напряжении от 20 кВ и выше обычно выполняются с усиленной изоляцией, предотвращающей разряд между витками при воздействии на обмотку импульсных перенапряжений.
Усиленная изоляция выполняется на входных катушках обмотки каждой фазы с двух ее концов. Расчет усиленной изоляции входных витков и катушек производится согласно указаниям § 4.5.
При выборе большего размера поперечного сечения провода без изоляции b его следует проверить по условиям теплоотдачи обмотки. Этот размер не должен быть больше размера, полученного по (5.6) или (5.7) при допустимом значении плотности теплового потока на поверхности обмотки (обычно не более 1200—1400 Вт/м2). Если выбранный размер b составляет не более половины полученного по (5.6) или (5.7), можно радиальные каналы в двойных катушках заменить шайбами (см. § 5.6), сохранив каналы между двойными катушками.
Осевой размер (высота) радиального канала hк в масляных трансформаторах мощностью от 160 до 6300 кВ·А и рабочих напряжениях не более 35 кВ колеблется от 4 до 6 мм; в сухих трансформаторах — от 10 до 20 мм. В двойных катушках, если в них не делается канал, вместо канала прокладываются шайбы — по две шайбы толщиной 0,5 мм каждая на одну двойную катушку. В трансформаторах большей мощности и при напряжении обмотки 110 и 220 кВ осевой размер канала может быть выбран от 4 до 10—15 мм. Размер канала hк во всех случаях выбирается по условиям обеспечения электрической прочности изоляции согласно указаниям § 4.5 и проверяется по условиям охлаждения (см. табл. 9.2).
Число катушек на одном стержне ориентировочно определяется по формуле
nкат≈
,
(6.63)
где h'к — в мм.
Для сдвоенных катушек с шайбами в двойных катушках и с каналами между двойными катушками число катушек
nкат2≈
,
(6.64)
Число витков в катушке ориентировочно
ωкат2= ω2/nкат2. (6.65)
Для обмотки с каналами между всеми катушками, м,
l2= { b'nкат2+ k [h'кnкат2- 2) + h'кр]}·10-3. (6.66)
Для обмотки с шайбами в двойных и с каналами между двойными катушками
l2= { b'nкат2+ k [h'к- 2) + h'к+
δш]}·10-3.
(6.66)
Высота канала в месте разрыва обмотки и размещения регулировочных витков hкр выбирается по условиям обеспечения электрической прочности изоляции согласно указаниям § 4.5. Коэффициент k, учитывающий усадку изоляции после сушки и опрессовки обмотки, k = 0,94 - 0,96.
Радиальный размер обмотки, м,
a2= a'nв2ωкат2·10-3, (6.68)
где ωкат2 — число витков катушки, дополненное до ближайшего большего целого числа; а' — радиальный размер провода, мм.
Внутренний и наружный диаметры, а также плотность теплового потока на поверхности обмотки q определяются соответственно по (6.58), (6.59), (7.19) —(7.19в).
Расстояние между обмотками ВН соседних стержней а22 выбирается согласно указаниям § 4.5 или 4.6.